7,991 research outputs found
Higher-order binding corrections to the Lamb shift of 2P states
We present an improved calculation of higher-order corrections to the
one-loop self energy of 2P states in hydrogen-like systems with small nuclear
charge Z. The method is based on a division of the integration with respect to
the photon energy into a high- and a low-energy part. The high-energy part is
calculated by an expansion of the electron propagator in powers of the Coulomb
field. The low-energy part is simplified by the application of a
Foldy-Wouthuysen transformation. This transformation leads to a clear
separation of the leading contribution from the relativistic corrections and
removes higher order terms. The method is applied to the 2P_{1/2} and 2P_{3/2}
states in atomic hydrogen. The results lead to new theoretical values for the
Lamb shifts and the fine structure splitting.Comment: 18 pages, LaTeX. In comparison to the journal version, it contains an
added note (2000) which reflects the current status of Lamb shift
calculation
Lamb Shift of 3P and 4P states and the determination of
The fine structure interval of P states in hydrogenlike systems can be
determined theoretically with high precision, because the energy levels of P
states are only slightly influenced by the structure of the nucleus. Therefore
a measurement of the fine structure may serve as an excellent test of QED in
bound systems or alternatively as a means of determining the fine structure
constant with very high precision. In this paper an improved analytic
calculation of higher-order binding corrections to the one-loop self energy of
3P and 4P states in hydrogen-like systems with low nuclear charge number is
presented. A comparison of the analytic results to the extrapolated numerical
data for high ions serves as an independent test of the analytic
evaluation. New theoretical values for the Lamb shift of the P states and for
the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure
Calculation of the Electron Self Energy for Low Nuclear Charge
We present a nonperturbative numerical evaluation of the one-photon electron
self energy for hydrogenlike ions with low nuclear charge numbers Z=1 to 5. Our
calculation for the 1S state has a numerical uncertainty of 0.8 Hz for hydrogen
and 13 Hz for singly-ionized helium. Resummation and convergence acceleration
techniques that reduce the computer time by about three orders of magnitude
were employed in the calculation. The numerical results are compared to results
based on known terms in the expansion of the self energy in powers of (Z
alpha).Comment: 10 pages, RevTeX, 2 figure
Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation
The self-energy screening correction is evaluated in a model in which the
effect of the screening electron is represented as a first-order perturbation
of the self energy by an effective potential. The effective potential is the
Coulomb potential of the spherically averaged charge density of the screening
electron. We evaluate the energy shift due to a , ,
, or electron screening a , ,
, or electron, for nuclear charge Z in the range . A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table
Geologic Mapping of Ascraeus Mons, Mars
Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. We are funded by NASA's Mars Data Analysis Program to complete a digital geologic map based on the mapping style. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objectives for which this mapping is based is to show the different lava flow morphologies across AM to better understand the evolution and geologic history
Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing
The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating
A Sunyaev-Zel'dovich Effect Survey for High Redshift Clusters
Interferometric observations of the Sunyaev-Zel'dovich Effect (SZE) toward
clusters of galaxies provide sensitive cosmological probes. We present results
from 1 cm observations (at BIMA and OVRO) of a large, intermediate redshift
cluster sample. In addition, we describe a proposed, higher sensitivity array
which will enable us to survey large portions of the sky. Simulated
observations indicate that we will be able to survey one square degree of sky
per month to sufficient depth that we will detect all galaxy clusters more
massive than 2x10^{14} h^{-1}_{50}M_\odot, regardless of their redshift. We
describe the cluster yield and resulting cosmological constraints from such a
survey.Comment: 7 pages, 6 figures, latex, contribution to VLT Opening Symposiu
Imaging the Sunyaev-Zel'dovich Effect
We report on results of interferometric imaging of the Sunyaev-Zel'dovich
Effect (SZE) with the OVRO and BIMA mm-arrays. Using low-noise cm-wave
receivers on the arrays, we have obtained high quality images for 27 distant
galaxy clusters. We review the use of the SZE as a cosmological tool. Gas mass
fractions derived from the SZE data are given for 18 of the clusters, as well
as the implied constraint on the matter density of the universe, . We
find . A best guess for the matter
density obtained by assuming a reasonable value for the Hubble constant and
also by attempting to account for the baryons contained in the galaxies as well
as those lost during the cluster formation process gives .
We also give preliminary results for the Hubble constant. Lastly, the power for
investigating the high redshift universe with a non-targeted high sensitivity
SZE survey is discussed and an interferometric survey is proposed.Comment: 14 pages, 7 figures, latex, contribution to Nobel Symposium "Particle
Physics and the Universe" to appear in Physica Scripta and World Scientific,
eds L. Bergstrom, P. Carlson and C. Fransso
QED self-energy contribution to highly-excited atomic states
We present numerical values for the self-energy shifts predicted by QED
(Quantum Electrodynamics) for hydrogenlike ions (nuclear charge ) with an electron in an , 4 or 5 level with high angular momentum
(). Applications include predictions of precision transition
energies and studies of the outer-shell structure of atoms and ions.Comment: 20 pages, 5 figure
- …