39,220 research outputs found

    Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States

    Full text link
    We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields BcB_{c} is a function of a single scaling argument ∣B−Bc∣T−κ|B-B_{c}|T^{-\kappa}, where the exponent κ=0.42\kappa = 0.42. This puzzling resemblance to a quantum Hall-insulator transition points to importance of interedge correlation between the coupled edge states.Comment: 4 pages, 3 figure

    Zero-Bias Anomalies in Narrow Tunnel Junctions in the Quantum Hall Regime

    Full text link
    We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1\nu > 1 and a strongly suppressed conductance for ν<1\nu < 1. A transition between the two behaviors is found near ν≈1\nu \approx 1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1\nu < 1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0n = 0 Landau levels. The ZBA for ν>1\nu > 1 arises from weak tunneling of quasiparticles between the n=1n = 1 edge channels.Comment: version with edits for clarit

    Quantum Hall Ferromagnetism in a Two-Dimensional Electron System

    Full text link
    Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction ν=1/3\nu = 1/3) and spin-unpolarized (ν=2/5\nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.Comment: 15 pages, 5 figure

    Spin Fluctuation Induced Dephasing in a Mesoscopic Ring

    Get PDF
    We investigate the persistent current in a hybrid Aharonov-Bohm ring - quantum dot system coupled to a reservoir which provides spin fluctuations. It is shown that the spin exchange interaction between the quantum dot and the reservoir induces dephasing in the absence of direct charge transfer. We demonstrate an anomalous nature of this spin-fluctuation induced dephasing which tends to enhance the persistent current. We explain our result in terms of the separation of the spin from the charge degree of freedom. The nature of the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure

    Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations

    Full text link
    Triple sign reversal in the mixed-state Hall effect has been observed for the first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip at the third sign reversal is more pronounced for higher fields, which is opposite to the case of the first sign reversal near T_c in most high-T_c superconductors. These observations can be explained by a recent prediction in which the third sign reversal is attributed to the energy derivative of the density of states and to a temperature-dependent function related to the superconducting energy gap. These contributions prominently appear in cases where the mean free path is significantly decreased, such as our case of ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let

    Electroweak Baryogenesis in a Supersymmetric U(1)' Model

    Full text link
    We construct an anomaly free supersymmetric U(1)' model with a secluded U(1)'-breaking sector. We study the one-loop effective potential at finite temperature, and show that there exists a strong enough first order electroweak phase transition for electroweak baryogenesis (EWBG) because of the large trilinear term AhhSHdHuA_h h S H_d H_u in the tree-level Higgs potential. Unlike in the MSSM, the lightest stop can be very heavy. We consider the non-local EWBG mechanism in the thin wall regime, and find that within uncertainties the observed baryon number can be generated from the Ï„\tau lepton contribution, with the secluded sector playing an essential role. The chargino and neutralino contributions and the implications for the Z' mass and electric dipole moments are briefly discussed.Comment: RevTex, 4 pages, 2 figures, references added, version to appear in PR
    • …
    corecore