1,045 research outputs found

    Parameter Estimation with Mixed-State Quantum Computation

    Full text link
    We present a quantum algorithm to estimate parameters at the quantum metrology limit using deterministic quantum computation with one bit. When the interactions occurring in a quantum system are described by a Hamiltonian H=θH0H= \theta H_0, we estimate θ\theta by zooming in on previous estimations and by implementing an adaptive Bayesian procedure. The final result of the algorithm is an updated estimation of θ\theta whose variance has been decreased in proportion to the time of evolution under H. For the problem of estimating several parameters, we implement dynamical-decoupling techniques and use the results of single parameter estimation. The cases of discrete-time evolution and reference-frame alignment are also discussed within the adaptive approach.Comment: 12 pages. Improved introduction and technical details moved to Appendi

    A Low Frequency Survey of the Galactic Plane Near l=11 degrees: Discovery of Three New Supernova Remnants

    Full text link
    We have imaged a 1 deg^2 field centered on the known Galactic supernova remnant (SNR) G11.2-0.3 at 74, 330, and 1465 MHz with the Very Large Array radio telescope (VLA) and 235 MHz with the Giant Metrewave Radio Telescope (GMRT). The 235, 330, and 1465 MHz data have a resolution of 25 arcsec, while the 74 MHz data have a resolution of 100 arcsec. The addition of this low frequency data has allowed us to confirm the previously reported low frequency turnover in the radio continuum spectra of the two known SNRs in the field: G11.2-0.3 and G11.4-0.1 with unprecedented precision. Such low frequency turnovers are believed to arise from free-free absorption in ionized thermal gas along the lines of site to the SNRs. Our data suggest that the 74 MHz optical depths of the absorbing gas is 0.56 and 1.1 for G11.2-0.3 and G11.4-0.1, respectively. In addition to adding much needed low frequency integrated flux measurements for two known SNRs, we have also detected three new SNRs: G11.15-0.71, G11.03-0.05, and G11.18+0.11. These new SNRs have integrated spectral indices between -0.44 and -0.80. Because of confusion with thermal sources, the high resolution (compared to previous Galactic radio frequency surveys) and surface brightness sensitivity of our observations have been essential to the identification of these new SNRs. With this study we have more than doubled the number of SNRs within just a 1 deg^2 field of view in the inner Galactic plane. This result suggests that future low frequency observations of the Galactic plane of similar quality may go a long way toward alleviating the long recognized incompleteness of Galactic SNR catalogs.Comment: 31 pages, 9 figures. Figure 7 is in color. Accepted to A

    Low-Frequency Radio Transients in the Galactic Center

    Get PDF
    We report the detection of a new radio transient source, GCRT J1746-2757, located only 1.1 degrees north of the Galactic center. Consistent with other radio transients toward the Galactic center, this source brightened and faded on a time scale of a few months. No X-ray counterpart was detected. We also report new 0.33 GHz measurements of the radio counterpart to the X-ray transient source, XTE J1748-288, previously detected and monitored at higher radio frequencies. We show that the spectrum of XTE J1748-288 steepened considerably during a period of a few months after its peak. We also discuss the need for a more efficient means of finding additional radio transients

    High-precision Measurements of Ionospheric TEC Gradients with the Very Large Array VHF System

    Full text link
    We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, can observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.Comment: accepted for publication in Radio Scienc

    Unpolarized light in quantum optics

    Get PDF
    We present a new derivation of the unpolarized quantum states of light, whose general form was first derived by Prakash and Chandra [Phys. Rev. A 4, 796 (1971)]. Our derivation makes use of some basic group theory, is straightforward, and offers some new insights.Comment: 3 pages, REVTeX, presented at ICQO'200

    The VLA Galactic Plane Survey

    Get PDF
    The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum emission in the Galactic plane between longitude 18 degrees 67 degr. with latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was observed with the Very Large Array (VLA) in 990 pointings. Short-spacing information for the HI line emission was obtained by additional observations with the Green Bank Telescope (GBT). HI spectral line images are presented with a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per 0.824 km/s channel. Continuum images made from channels without HI line emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane Survey (SGPS). In general, the agreement between these surveys is impressive, considering the differences in instrumentation and image processing techniques used for each survey. The differences between VGPS and CGPS images are small, < 6 K (rms) in channels where the mean HI brightness temperature in the field exceeds 80 K. A similar degree of consistency is found between the VGPS and SGPS. The agreement we find between arcminute resolution surveys of the Galactic plane is a crucial step towards combining these surveys into a single uniform dataset which covers 90% of the Galactic disk: the International Galactic Plane Survey (IGPS). The VGPS data will be made available on the World Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13 figures. For information on data release, colour images etc. see http://www.ras.ucalgary.ca/VGP

    Spatially-resolved Thermal Continuum Absorption against the Supernova Remnant W49B

    Get PDF
    We present sub-arcminute resolution imaging of the Galactic supernova remnant W49B at 74 MHz (25") and 327 MHz (6"), the former being the lowest frequency at which the source has been resolved. While the 327 MHz image shows a shell-like morphology similar to that seen at higher frequencies, the 74 MHz image is considerably different, with the southwest region of the remnant almost completely attenuated. The implied 74 MHz optical depth (~ 1.6) is much higher than the intrinsic absorption levels seen inside two other relatively young remnants, Cas A and the Crab Nebula, nor are natural variations in the relativistic electron energy spectra expected at such levels. The geometry of the absorption is also inconsistent with intrinsic absorption. We attribute the absorption to extrinsic free-free absorption by a intervening cloud of thermal electrons. Its presence has already been inferred from the low-frequency turnover in the integrated continuum spectrum and from the detection of radio recombination lines toward the remnant. Our observations confirm the basic conclusions of those measurements, and our observations have resolved the absorber into a complex of classical HII regions surrounded either partially or fully by low-density HII gas. We identify this low-density gas as an extended HII region envelope (EHE), whose statistical properties were inferred from low resolution meter- and centimeter-wavelength recombination line observations. Comparison of our radio images with HI and H_2CO observations show that the intervening thermal gas is likely associated with neutral and molecular material as well.Comment: 18 pages, LaTeX with AASTeX-5, 5 figures in 7 PostScript files; accepted for publication in the Ap

    The Cosmic Background Imager

    Get PDF
    Design and performance details are given for the Cosmic Background Imager (CBI), an interferometer array that is measuring the power spectrum of fluctuations in the cosmic microwave background radiation (CMBR) for multipoles in the range 400 < l < 3500. The CBI is located at an altitude of 5000 m in the Atacama Desert in northern Chile. It is a planar synthesis array with 13 0.9-m diameter antennas on a 6-m diameter tracking platform. Each antenna has a cooled, low-noise receiver operating in the 26-36 GHz band. Signals are cross-correlated in an analog filterbank correlator with ten 1 GHz bands. This allows spectral index measurements which can be used to distinguish CMBR signals from diffuse galactic foregrounds. A 1.2 kHz 180-deg phase switching scheme is used to reject cross-talk and low-frequency pick-up in the signal processing system. The CBI has a 3-axis mount which allows the tracking platform to be rotated about the optical axis, providing improved (u,v) coverage and a powerful discriminant against false signals generated in the receiving electronics. Rotating the tracking platform also permits polarization measurements when some of the antennas are configured for the orthogonal polarization.Comment: 14 pages. Accepted for publication in PASP. See also http://www.astro.caltech.edu/~tjp/CBI

    High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz

    Get PDF
    We present a wide field, sub-arcminute resolution VLA image of the Galactic Center region at 330 MHz. With a resolution of ~ 7" X 12" and an RMS noise of 1.6 mJy/beam, this image represents a significant increase in resolution and sensitivity over the previously published VLA image at this frequency. The improved sensitivity has more than tripled the census of small diameter sources in the region, has resulted in the detection of two new Non Thermal Filaments (NTFs), 18 NTF candidates, 30 pulsar candidates, reveals previously known extended sources in greater detail, and has resulted in the first detection of Sagittarius A* in this frequency range. A version of this paper containing full resolution images may be found at http://lwa.nrl.navy.mil/nord/AAAB.pdf.Comment: Astronomical Journal, Accepted 62 Pages, 21 Figure

    The extragalactic radio-source population at 95 GHz

    Full text link
    We have used the Australia Telescope Compact Array (ATCA) at 95GHz to carry out continuum observations of 130 extragalactic radio sources selected from the Australia Telescope 20GHz (AT20G) survey. Over 90% of these sources are detected at 95 GHz, and we use a triple-correlation method to measure simultaneous 20 and 95 GHz flux densities. We show that the ATCA can measure 95GHz flux densities to ~10% accuracy in a few minutes for sources above ~50mJy. The median 20-95GHz spectral index does not vary significantly with flux density for extragalactic sources with S20>150 mJy. This allows us to estimate the extragalactic radio source counts at 95GHz by combining our observed 20-95GHz spectral-index distribution with the accurate 20GHz source counts measured in the AT20G survey. The resulting 95GHz source counts down to 80 mJy are significantly lower than those found by several previous studies. The main reason is that most radio sources with flat or rising spectra in the frequency range 5-20GHz show a spectral turnover between 20 and 95 GHz. As a result, there are fewer 95GHz sources (by almost a factor of two at 0.1 Jy) than would be predicted on the basis of extrapolation from the source populations seen in lower-frequency surveys. We also derive the predicted confusion noise in CMB surveys at 95GHz and find a value 20-30% lower than previous estimates. The 95GHz source population at the flux levels probed by this study is dominated by QSOs with a median redshift z~1. We find a correlation between optical magnitude and 95GHz flux density which suggests that many of the brightest 95 GHz sources are relativistically beamed, with both the optical and millimetre continuum significantly brightened by Doppler boosting.Comment: Replaced with final version (MNRAS, in press), 15 pages plus two landscape data table
    • …
    corecore