285 research outputs found
Contrast Mechanisms for the Detection of Ferroelectric Domains with Scanning Force Microscopy
We present a full analysis of the contrast mechanisms for the detection of
ferroelectric domains on all faces of bulk single crystals using scanning force
microscopy exemplified on hexagonally poled lithium niobate. The domain
contrast can be attributed to three different mechanisms: i) the thickness
change of the sample due to an out-of-plane piezoelectric response (standard
piezoresponse force microscopy), ii) the lateral displacement of the sample
surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample
interaction at the domain boundaries caused by surface charges on the
crystallographic y- and z-faces. A careful analysis of the movement of the
cantilever with respect to its orientation relative to the crystallographic
axes of the sample allows a clear attribution of the observed domain contrast
to the driving forces respectively.Comment: 8 pages, 8 figure
Depth resolution of Piezoresponse force microscopy
Given that a ferroelectric domain is generally a three dimensional entity, the determination of its area as well as its depth is mandatory for full characterization. Piezoresponse force microscopy (PFM) is known for its ability to map the lateral dimensions of ferroelectric domains with high accuracy. However, no depth profile information has been readily available so far. Here, we have used ferroelectric domains of known depth profile to determine the dependence of the PFM response on the depth of the domain, and thus effectively the depth resolution of PFM detection
Impact of the tip radius on the lateral resolution in piezoresponse force microscopy
We present a quantitative investigation of the impact of tip radius as well
as sample type and thickness on the lateral resolution in piezoresponse force
microscopy (PFM) investigating bulk single crystals. The observed linear
dependence of the width of the domain wall on the tip radius as well as the
independence of the lateral resolution on the specific crystal-type are
validated by a simple theoretical model. Using a Ti-Pt-coated tip with a
nominal radius of 15 nm the so far highest lateral resolution in bulk crystals
of only 17 nm was obtained
Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling
Continuous wave ultraviolet (UV) laser irradiation at lambda=244 nm on the +z face of undoped and MgO doped congruent lithium niobate single crystals has been observed to inhibit ferroelectric domain inversion. The inhibition occurs directly beneath the illuminated regions, in a depth greater than 100 nm during subsequent electric field poling of the crystal. Domain inhibition was confirmed by both differential domain etching and piezoresponse force microscopy. This effect allows the formation of arbitrarily shaped domains in lithium niobate and forms the basis of a high spatial resolution micro-structuring approach when followed by chemical etching
Critical Casimir effect in classical binary liquid mixtures
If a fluctuating medium is confined, the ensuing perturbation of its
fluctuation spectrum generates Casimir-like effective forces acting on its
confining surfaces. Near a continuous phase transition of such a medium the
corresponding order parameter fluctuations occur on all length scales and
therefore close to the critical point this effect acquires a universal
character, i.e., to a large extent it is independent of the microscopic details
of the actual system. Accordingly it can be calculated theoretically by
studying suitable representative model systems.
We report on the direct measurement of critical Casimir forces by total
internal reflection microscopy (TIRM), with femto-Newton resolution. The
corresponding potentials are determined for individual colloidal particles
floating above a substrate under the action of the critical thermal noise in
the solvent medium, constituted by a binary liquid mixture of water and
2,6-lutidine near its lower consolute point. Depending on the relative
adsorption preferences of the colloid and substrate surfaces with respect to
the two components of the binary liquid mixture, we observe that, upon
approaching the critical point of the solvent, attractive or repulsive forces
emerge and supersede those prevailing away from it. Based on the knowledge of
the critical Casimir forces acting in film geometries within the Ising
universality class and with equal or opposing boundary conditions, we provide
the corresponding theoretical predictions for the sphere-planar wall geometry
of the experiment. The experimental data for the effective potential can be
interpreted consistently in terms of these predictions and a remarkable
quantitative agreement is observed.Comment: 30 pages, 17 figure
Collective magnetism at multiferroic vortex domain walls
Topological defects have been playgrounds for many emergent phenomena in
complex matter such as superfluids, liquid crystals, and early universe.
Recently, vortex-like topological defects with six interlocked structural
antiphase and ferroelectric domains merging into a vortex core were revealed in
multiferroic hexagonal manganites. Numerous vortices are found to form an
intriguing self-organized network. Thus, it is imperative to find out the
magnetic nature of these vortices. Using cryogenic magnetic force microscopy,
we discovered unprecedented alternating net moments at domain walls around
vortices that can correlate over the entire vortex network in hexagonal ErMnO3
The collective nature of domain wall magnetism originates from the
uncompensated Er3+ moments and the correlated organization of the vortex
network. Furthermore, our proposed model indicates a fascinating phenomenon of
field-controllable spin chirality. Our results demonstrate a new route to
achieving magnetoelectric coupling at domain walls in single-phase
multiferroics, which may be harnessed for nanoscale multifunctional devices.Comment: 18 pages, 10 figure
Efficacy and toxicity of bimodal radiotherapy in WHO grade 2 meningiomas following subtotal resection with carbon ion boost:Prospective phase 2 MARCIE trial
Background: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5).Methods:A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. Results:With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. Conclusions:Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.</p
Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations
The threat posed by side channels requires ciphers that can be efficiently protected in both software and hardware against such attacks. In this paper, we proposed a novel Sbox construction based on iterations of shift-invariant quadratic permutations and linear diffusions. Owing to the selected quadratic permutations, all of our Sboxes enable uniform 3-share threshold implementations, which provide first order SCA protections without any fresh randomness. More importantly, because of the shift-invariant property, there are ample implementation trade-offs available, in software as well as hardware. We provide implementation results (software and hardware) for a four-bit and an eight-bit Sbox, which confirm that our constructions are competitive and can be easily adapted to various platforms as claimed. We have successfully verified their resistance to first order attacks based on real acquisitions. Because there are very few studies focusing on software-based threshold implementations, our software implementations might be of independent interest in this regard
- …