146 research outputs found

    Periodic letter strokes within a word affect fixation disparity during reading

    Get PDF
    We investigated the way in which binocular coordination in reading is affected by the spatial structure of text. Vergence eye movements were measured (EyeLink II) in 32 observers while they read 120 single German sentences (Potsdam Sentence Corpus) silently for comprehension. The similarity in shape between the neighboring strokes of component letters, as measured by the first peak in the horizontal auto-correlation of the images of the words, was found to be associated with (i) a smaller minimum fixation disparity (i.e. vergence error) during fixation; (ii) a longer time to reach this minimum disparity and (iii) a longer overall fixation duration. The results were obtained only for binocular reading: no effects of auto-correlation could be observed for monocular reading. The findings help to explain the longer reading times reported for words and fonts with high auto-correlation and may also begin to provide a causal link between poor binocular control and reading difficulties. © ARVO

    Electron magnetotransport in GaAs/AlGaAs superlattices with weak and strong inter-well coupling

    Full text link
    We report on magnetotransport measurements in two MBE-grown GaAs/AlGaAs superlattices formed by wide and narrow quantum wells and thin Si-doped barriers subject to tilted magnetic fields. It has been shown that illumination of the strongly coupled superlattice with narrow wells leads to reduction of its dimensionality from the 3D to 2D. The illumination-induced transition is revealed by remarkable change of magnetoresistance curves as compared to those measured before illumination. The experimental data along with tight-binding model calculations indicate that the illumination not only enhances the electron concentration but also suppresses the electron tunneling through the barriers.Comment: 3 pages, 3 figures, elsart/PHYEAUTH macros; presented on the LDSD 2007 Conference in the Caribbean Archipelago San Andres, Colombia. To be published as a special issue of Microelectronics Journal (Elsevier

    Dominance and compensatory growth in phytoplankton communities under salinity stress

    Get PDF
    Increasing levels of environmental stress due to global warming and eutrophication, and concerns about an unparalleled global diversity loss, have triggered new interest in the question whether the stability of ecosystem properties depends on population dynamics of dominant species or on compensatory growth of rare species. Recent meta-analyses suggest that compensatory dynamics are rare in natural systems. Experimental results, however, indicate that the interdependence of stressor regime, species traits, and species richness determines which mechanisms stabilise communities. Stability will depend on population dynamics of dominant species, if they remain the best performers regardless of disturbance. If dominant species become rare or lost, compensatory growth of rare species will insure natural communities against complete failure. Salinity is an important stressor governing growth and distribution of phytoplankton in brackish ecosystems, and its impact on coastal aquatic ecosystems is likely to change due to global warming. We performed two short-term experiments to investigate the effects of salinity stress on community structure and biomass production of natural phytoplankton communities collected in tidally influenced and polymictic Lake Waihola (New Zealand). The lake was brackish when the inoculum for the first experiment was collected. The inoculum for the second experiment originated from a fresh water situation. In both experiments, the phytoplankton assemblage was exposed to a salinity gradient ranging from 0 to 5. To assess the importance of dominance and compensatory growth, we determined biomass production, species richness, diversity, evenness and dominance indices, and species specific growth rates. Biomass production in our experiments was determined by dominant species. Anabaena flos-aquae dominated in the first experiment, and Asterionella formosa in the second experiment. Despite the importance of these species, we found significant growth responses of rare and abundant species. Even if these species showed high growth rates, biomass production was carried by the dominant species as long as the salinity level allowed them to grow. When the salinity level was detrimental to the growth of the dominant species, reduced dominance and increased diversity indices emphasised the importance of compensatory growth of rare species. The salinity stress applied in our experiments was strong enough to change the hierarchy of successful functional traits, which affected community structure and biomass production of the plankton communities. If the predicted sea water rise, increasing frequency of storm tides, rising water temperatures, and altered precipitation and run-off cause the salinity of coastal aquatic ecosystems to change, major changes in community composition, diversity and dominance structure of planktonic primary producers might be expected

    Objective and subjective measures of vergence step responses

    Get PDF
    AbstractDichoptic nonius lines are used for subjectively (psychophysically) measuring vergence states, but they have been questioned as valid indicators of vergence eye position. In a mirror-stereoscope, we presented convergent and divergent step-stimuli and estimated the vergence response with nonius lines flashed at fixed delays after the disparity step stimulus. For each delay, an adaptive psychophysical procedure was run to determine the physical nonius offset required for subjective alignment; these vergence states were compared with objective eye movement recordings. Between both measures of initial vergence, we calculated the maximal cross-correlation coefficient: the median in our sample was about 0.9 for convergence and divergence, suggesting a good agreement. Relative to the objective measures, the subjective method revealed a smaller vergence velocity and a larger vergence response in the final phase of the response, but both measures were well correlated. The dynamic nonius test is therefore considered to be useful to relatively evaluate a subject’s ability in disparity vergence

    Electronic Structure of Three-Dimensional Superlattices Subject to Tilted Magnetic Fields

    Full text link
    Full quantum-mechanical description of electrons moving in 3D structures with unidirectional periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation. To understand magneto-oscillations in such systems it is in many cases sufficient to use the quasi-classical approach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-independent rigid body in k-space and periods of oscillations are related to extremal cross-sections of the Fermi surface cut by planes perpendicular to the magnetic-field direction. We point out cases where the quasi-classical treatment fails and propose a simple tight-binding fully-quantum-mechanical model of the superlattice electronic structure.Comment: 8 pages, 7 figures, RevTex, submitted to Phys. Rev.

    Cymantrene–Triazole "Click" Products: Structural Characterization and Electrochemical Properties

    Get PDF
    We report the first known examples of triazole-derivatized cymantrene complexes (η5-[4-substituted triazol-1-yl]cyclopentadienyl)tricarbonylmanganese(I), obtained via a “click” chemical synthesis, bearing a phenyl, 3-aminophenyl, or 4-aminophenyl moiety at the 4-position of the triazole ring. Structural characterization data using multinuclear NMR, UV–vis, ATR-IR, and mass spectrometric methods are provided, as well as crystallographic data for (η5-[4-phenyltriazol-1-yl]cyclopentadienyl)tricarbonylmanganese(I) and (η5-[4-(3-aminophenyl)triazol-1-yl]cyclopentadienyl)tricarbonylmanganese(I). Cyclic voltammetric characterization of the redox behavior of each of the three cymantrene–triazole complexes is presented together with digital simulations, in situ infrared spectroelectrochemistry, and DFT calculations to extract the associated kinetic and thermodynamic parameters. The trypanocidal activity of each cymantrene–triazole complex is also examined, and these complexes are found to be more active than cymantrene alone

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    Reading Text Increases Binocular Disparity in Dyslexic Children

    Get PDF
    Children with developmental dyslexia show reading impairment compared to their peers, despite being matched on IQ, socio-economic background, and educational opportunities. The neurological and cognitive basis of dyslexia remains a highly debated topic. Proponents of the magnocellular theory, which postulates abnormalities in the M-stream of the visual pathway cause developmental dyslexia, claim that children with dyslexia have deficient binocular coordination, and this is the underlying cause of developmental dyslexia. We measured binocular coordination during reading and a non-linguistic scanning task in three participant groups: adults, typically developing children, and children with dyslexia. A significant increase in fixation disparity was observed for dyslexic children solely when reading. Our study casts serious doubts on the claims of the magnocellular theory. The exclusivity of increased fixation disparity in dyslexics during reading might be a result of the allocation of inadequate attentional and/or cognitive resources to the reading process, or suboptimal linguistic processing per se
    • …
    corecore