32 research outputs found

    Dynamic relaxation oscillations in a nonlinearly driven quartz crystal

    Full text link
    We demonstrate thermo-mechanical relaxation oscillations in a strongly driven quartz crystal. Dynamic bifurcation leads to two stable oscillation states with a distinct electrical impedance. Slow Joule-heating, which shifts the susceptibility of the crystal, provides a feedback that leads to thermally-induced oscillations, in which the amplitude of the crystal is modulated by a relaxation cycle. The frequency of the relaxation cycle is roughly a million times lower than the resonance frequency of the crystal, and it can be adjusted by the detuning from the critical point for dynamic bifurcation. The experimental observations are reproduced by a simple model that takes into account the slow dynamics of the system.Comment: Main text: 8 pages, 4 figures. Supplementary information: 4 pages, 3 figure

    Efficient readout of micromechanical resonator arrays in ambient conditions

    Full text link
    We present a method for efficient spectral readout of mechanical resonator arrays in dissipative environments. Magnetomotive drive and detection is used to drive double clamped resonators in the nonlinear regime. Resonators with almost identical resonance frequencies can be tracked individually by sweeping the drive power. Measurements are performed at room temperature and atmospheric pressure. These conditions enable application in high throughput resonant sensor arrays.Comment: 4 pages, 4 figure

    Magnetomotive drive and detection of clamped-clamped mechanical resonators in water

    Full text link
    We demonstrate magnetomotive drive and detection of doubly clamped string resonators in water. A compact 1.9 T permanent magnet is used to detect the fundamental and higher flexural modes of 200μm\mathrm{200 \mu m} long resonators. Good agreement is found between the magnetomotive measurements and optical measurements performed on the same resonator. The magnetomotive detection scheme can be used to simultaneously drive and detect multiple sensors or scanning probes in viscous fluids without alignment of detector beams.Comment: 4 pages, 3 figure

    Strongly coupled modes in a weakly driven micromechanical resonator

    Full text link
    We demonstrate strong coupling between the flexural vibration modes of a clamped-clamped micromechanical resonator vibrating at low amplitudes. This coupling enables the direct measurement of the frequency response via amplitude- and phase modulation schemes using the fundamental mode as a mechanical detector. In the linear regime, a frequency shift of 0.8 Hz\mathrm{0.8\,Hz} is observed for a mode with a line width of 5.8 Hz\mathrm{5.8\,Hz} in vacuum. The measured response is well-described by the analytical model based on the Euler-Bernoulli beam including tension. Calculations predict an upper limit for the room-temperature Q-factor of 4.5×105\mathrm{4.5\times10^5} for our top-down fabricated micromechanical beam resonators.Comment: 9 pages, 2 figure

    Nonlinear modal interactions in clamped-clamped mechanical resonators

    Full text link
    A theoretical and experimental investigation is presented on the intermodal coupling between the flexural vibration modes of a single clamped-clamped beam. Nonlinear coupling allows an arbitrary flexural mode to be used as a self-detector for the amplitude of another mode, presenting a method to measure the energy stored in a specific resonance mode. Experimentally observed complex nonlinear dynamics of the coupled modes are quantitatively captured by a model which couples the modes via the beam extension; the same mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams.Comment: 5 pages, 3 figure

    Q-factor control of a microcantilever by mechanical sideband excitation

    Full text link
    We demonstrate the coupling between the fundamental and second flexural mode of a microcantilever. A mechanical analogue of cavity-optomechanics is then employed, where the mechanical cavity is formed by the second vibrational mode of the same cantilever, coupled to the fundamental mode via the geometric nonlinearity. By exciting the cantilever at the sum and difference frequencies between fundamental and second flexural mode, the motion of the fundamental mode of the cantilever is amplified and damped. This concept makes it possible to enhance or suppress the Q-factor over a wide range.Comment: 9 pages, 3 figure

    Interactions between directly and parametrically driven vibration modes in a micromechanical resonator

    Full text link
    The interactions between parametrically and directly driven vibration modes of a clamped-clamped beam resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First, the parametric amplification and oscillation of a single mode are analyzed by the power and phase dependence below and above the threshold for parametric oscillation. Then, the motion of a parametrically driven mode is detected by the induced change in resonance frequency in another mode of the same resonator. The resonance frequency shift is the result of the nonlinear coupling between the modes by the displacement-induced tension in the beam. These nonlinear modal interactions result in the quadratic relation between the resonance frequency of one mode and the amplitude of another mode. The amplitude of a parametrically oscillating mode depends on the square root of the pump frequency. Combining these dependencies yields a linear relation between the resonance frequency of the directly driven mode and the frequency of the parametrically oscillating mode.Comment: 5 pages, 4 figure
    corecore