6,735 research outputs found

    Anomalous diffusion with log-periodic modulation in a selected time interval

    Full text link
    On certain self-similar substrates the time behavior of a random walk is modulated by logarithmic periodic oscillations on all time scales. We show that if disorder is introduced in a way that self-similarity holds only in average, the modulating oscillations are washed out but subdiffusion remains as in the perfect self-similar case. Also, if disorder distribution is appropriately chosen the oscillations are localized in a selected time interval. Both the overall random walk exponent and the period of the oscillations are analytically obtained and confirmed by Monte Carlo simulations.Comment: 4 pages, 5 figure

    Anisotropic anomalous diffusion modulated by log-periodic oscillations

    Full text link
    We introduce finite ramified self-affine substrates in two dimensions with a set of appropriate hopping rates between nearest-neighbor sites, where the diffusion of a single random walk presents an anomalous {\it anisotropic} behavior modulated by log-periodic oscillations. The anisotropy is revealed by two different random walk exponents, νx\nu_x and νy\nu_y, in the {\it x} and {\it y} direction, respectively. The values of these exponents, as well as the period of the oscillation, are analytically obtained and confirmed by Monte Carlo simulations.Comment: 7 pages, 7 figure

    Extremely Sub-wavelength Planar Magnetic Metamaterials

    Full text link
    We present highly sub-wavelength magnetic metamaterials designed for operation at radio frequencies (RFs). A dual layer design consisting of independent planar spiral elements enables experimental demonstration of a unit cell size (a) that is ~ 700 times smaller than the resonant wavelength ({\lambda}0). Simulations indicate that utilization of a conductive via to connect spiral layers permits further optimization and we achieve a unit cell that is {\lambda}0/a ~ 2000. Magnetic metamaterials are characterized by a novel time domain method which permits determination of the complex magnetic response. Numerical simulations are performed to support experimental data and we find excellent agreement. These new designs make metamaterial low frequency experimental investigations practical and suggest their use for study of magneto-inductive waves, levitation, and further enable potential RF applications.Comment: 5 pages, 4 figure

    Muon Detection of TeV Gamma Rays from Gamma Ray Bursts

    Get PDF
    Because of the limited size of the satellite-borne instruments, it has not been possible to observe the flux of gamma ray bursts (GRB) beyond GeV energy. We here show that it is possible to detect the GRB radiation of TeV energy and above, by detecting the muon secondaries produced when the gamma rays shower in the Earth's atmosphere. Observation is made possible by the recent commissioning of underground detectors (AMANDA, the Lake Baikal detector and MILAGRO) which combine a low muon threshold of a few hundred GeV or less, with a large effective area of 10^3 m^2 or more. Observations will not only provide new insights in the origin and characteristics of GRB, they also provide quantitative information on the diffuse infrared background.Comment: Revtex, 12 pages, 3 postscript figures, uses epsfig.st

    Constant effective mass across the phase diagram of high-Tc_{c} cuprates

    Full text link
    We investigate the hole dynamics in two prototypical high temperature superconducting systems: La2x_{2-x}Srx_{x}CuO4_{4} and YBa2_{2}Cu3_{3}% Oy_{y} using a combination of DC transport and infrared spectroscopy. By exploring the effective spectral weight obtained with optics in conjunction with DC Hall results we find that the transition to the Mott insulating state in these systems is of the "vanishing carrier number" type since we observe no substantial enhancement of the mass as one proceeds to undoped phases. Further, the effective mass remains constant across the entire underdoped regime of the phase diagram. We discuss the implications of these results for the understanding of both transport phenomena and pairing mechanism in high-Tc_{c} systems.Comment: 5 pages, 2 figure

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal

    Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging

    Full text link
    We present the theory, design, and realization of a polarization-insensitive metamaterial absorber for terahertz frequencies. We derive geometrical-independent conditions for effective medium absorbers in general, and for resonant metamaterials specically. Our fabricated design reaches and absorptivity of 78% at 1.145 ThzComment: 6 Pages, 5 figures; figures update
    corecore