5,416 research outputs found
A study of the sonic-boom characteristics of a blunt body at a Mach number of 4.14
An experimental and theoretical study has shown that the applicability of far-field sonic-boom theory previously demonstrated for more slender shapes may now be extended to bodies with ratios of diameter to length as great as 2 and to Mach numbers at least as high as 4.14. This finding is of special significance in view of the limitations to the use of existing methods for the extrapolation of close-in experimental data
Estimation of wing nonlinear aerodynamic characteristics at supersonic speeds
A computational system for estimation of nonlinear aerodynamic characteristics of wings at supersonic speeds was developed and was incorporated in a computer program. This corrected linearized theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading edge thrust, and provides an estimate of detached leading edge vortex loadings that result when the theoretical thrust forces are not fully realized
Supersonic wings with significant leading-edge thrust at cruise
Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated
Estimation of attainable leading-edge thrust for wings at subsonic and supersonic speeds
The factors which place limits on the theoretical leading edge thrust are identified. An empirical method for the estimation of attainable thrust is presented. The method is based on the use of simple sweep theory to permit a two dimensional analysis, the use of theoretical airfoil programs to define thrust dependence on local geometric characteristics, and the examination of experimental two dimensional airfoil data to define limitations imposed by local Mach numbers and Reynolds numbers. Comparisons of theoretical and experimental aerodynamic characteristics for a series of wing body configurations are examined
Investigation of warm fog properties and fog modification concepts
Warm fog seeding to determine potential of various sized and unsized hygroscopic chemicals for fog dissipatio
Optimal probabilistic cloning and purification of quantum states
We investigate the probabilistic cloning and purification of quantum states.
The performance of these probabilistic operations is quantified by the average
fidelity between the ideal and actual output states. We provide a simple
formula for the maximal achievable average fidelity and we explictly show how
to construct a probabilistic operation that achieves this fidelity. We
illustrate our method on several examples such as the phase covariant cloning
of qubits, cloning of coherent states, and purification of qubits transmitted
via depolarizing channel and amplitude damping channel. Our examples reveal
that the probabilistic cloner may yield higher fidelity than the best
deterministic cloner even when the states that should be cloned are linearly
dependent and are drawn from a continuous set.Comment: 9 pages, 2 figure
Estimation of leading-edge thrust for supersonic wings of arbitrary planform
A numerical method for the estimation of leading edge thrust for supersonic wings of arbitrary planform was developed and was programmed as an extension to an existing high speed digital computer method for prediction of wing pressure distributions. The accuracy of the method was assessed by comparison with linearized theory results for a series of flat delta wings. Application of the method to wings of arbitrary planform, both flat and cambered, is illustrated in several examples
Intravenous meloxicam for the treatment of moderate to severe acute pain: a pooled analysis of safety and opioid-reducing effects.
BACKGROUND AND OBJECTIVES: To describe the safety and tolerability of intravenous meloxicam compared with placebo across all phase II/III clinical trials.
METHODS: Safety data and opioid use from subjects with moderate to severe postoperative pain who received ≥1 dose of intravenous meloxicam (5-60 mg) or placebo in 1 of 7 studies (4 phase II; 3 phase III) were pooled. Data from intravenous meloxicam 5 mg, 7.5 mg and 15 mg groups were combined (low-dose subset).
RESULTS: A total of 1426 adults (86.6% white; mean age: 45.8 years) received ≥1 dose of meloxicam IV; 517 (77.6% white; mean age: 46.7 years) received placebo. The incidence of treatment-emergent adverse events (TEAEs) in intravenous meloxicam and placebo-treated subjects was 47% and 57%, respectively. The most commonly reported TEAEs across treatment groups (intravenous meloxicam 5-15 mg, 30 mg, 60 mg and placebo, respectively) were nausea (4.3%, 20.8%, 5.8% and 25.3%), headache (1.5%, 5.6%, 1.6% and 10.4%), vomiting (2.8%, 4.6%, 1.6% and 7.4%) and dizziness (0%, 3.5%, 1.1% and 4.8%). TEAE incidence was generally similar in subjects aged \u3e65 years with impaired renal function and the general population. Similar rates of cardiovascular events were reported between treatment groups. One death was reported (placebo group; unrelated to study drug). There were 35 serious adverse events (SAEs); intravenous meloxicam 15 mg (n=5), intravenous meloxicam 30 mg (n=15) and placebo (n=15). The SAEs in meloxicam-treated subjects were determined to be unrelated to study medication. Six subjects withdrew due to TEAEs, including three treated with intravenous meloxicam (rash, localized edema and postprocedural pulmonary embolism). In trials where opioid use was monitored, meloxicam reduced postoperative rescue opioid use.
CONCLUSIONS: Intravenous meloxicam was generally well tolerated in subjects with moderate to severe postoperative pain.
TRIAL REGISTRATION NUMBERS: NCT01436032, NCT00945763, NCT01084161, NCT02540265, NCT02678286, NCT02675907 and NCT02720692
- …