314 research outputs found

    Zero kinetic energy-pulsed field ionization and resonance enhanced multiphoton ionization photoelectron spectroscopy: Ionization dynamics of Rydberg states in HBr

    Get PDF
    The results of rotationally resolved resonance enhanced multiphoton ionization photoelectron spectroscopy and zero kinetic energy‐pulsed field ionization studies on HBr via various rotational levels of the F^ 1Δ_2 and f^ 3Δ_2 Rydberg states are reported. These studies lead to an accurate determination of the lowest ionization threshold as 94 098.9±1 cm^(−1). Observed rotational and spin–orbit branching ratios are compared to the results of ab initio calculations. The differences between theory and experiment highlight the dominant role of rotational and spin–orbit interactions for the dynamic properties of the high‐n Rydberg states involved in the pulsed field ionization process

    Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii

    Get PDF
    Effects of fluctuating irradiance regimes on excessive photosynthetically active radiation (PAR) and ultraviolet (UV) radiation sensitivity were assessed for Emiliania huxleyi (Lohman) and Thalassiosira weissflogii (Grunow) Fryxell and Hasle. Cultures acclimated to low irradiance were subjected to two irradiance regimes of equal daily dose: dynamic irradiance simulating vertical mixing within the water column and constant irradiance. For each regime two irradiance levels were studied. Growth was monitored for 3 d, after which pigment composition was determined. Next, excessive PAR and UV sensitivity was measured by studying viability loss during 4-h exposure to simulated surface irradiance (SSI). Furthermore, the effects of inhibition of D1 reaction center protein turnover were investigated by incubating samples with lincomycin prior to exposure. Dynamic irradiance reduced growth rates of both species as compared to constant irradiance. Pools of light-harvesting pigments increased in dynamic irradiance, whereas the protective pigment pools decreased compared to constant irradiance. Excessive irradiance sensitivity was enhanced in cells grown in fluctuating irradiance. Furthermore, viability loss was most pronounced in UV treatments combined with lincomycin. E. huxleyi was more sensitive to excessive irradiance than T. weissflogii, which coincided with a lower ratio between protective and light-harvesting pigments in the former species. Irradiance modulation by deep vertical mixing influences growth, pigment composition, and excessive PAR and UV sensitivity within days

    Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent

    Get PDF
    Palm oil mill effluent (POME) is a type of wastewater posing large problems when discharged in the environment. Yet, due to its high nutrient content, POME may offer opportunities for algal growth and subsequent harvesting of high-value products. The marine diatom Phaeodactylum tricornutum is a potential feedstock diatom for bioactive compounds such as the carotenoid fucoxanthin, which has been shown to have pharmaceutical applications. The aim of this paper was to evaluate the growth and fucoxanthin productivity of P. tricornutum grown on POME, as a function of light intensity, temperature, salinity, and nutrient enrichment. High-saturating irradiance (300molphotonsm(-2)s(-1)) levels at 25 degrees C showed highest growth rates but decreased the fucoxanthin productivity of P. tricornutum. Box-Behnken response surface methodology revealed that the optimum fucoxanthin productivity was influenced by temperature, salinity, and the addition of urea. Nutrient enrichment by phosphorus did not enhance cell density and fucoxanthin productivity, while urea addition was found to stimulate both. We conclude that POME wastewater, supplemented with urea, can be considered as the potential medium for P. tricornutum to replace commercial nutrients while producing high amounts of fucoxanthin.</p

    Taxon‐specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring

    Get PDF
    Effects of prolonged darkness on Arctic phytoplankton composition were investigated with lab experiments and a pigment time series in Kongsfjorden, Spitsbergen (78°55â€ČN). Chlorophyll a (Chl a), pigment composition, particulate organic carbon, cell numbers, and photosynthetic characteristics were studied in Arctic diatoms (Thalassiosira antarctica, Thalassiosira nordenskioeldii) and flagellates (Rhodomonas sp., Micromonas sp.) during 8 weeks of darkness and subsequent recovery in irradiance. Loss of photosynthetic functionality after 2 weeks of darkness was reversible in all species when returned to irradiance. Diatoms were more resistant to prolonged darkness (> 2 weeks) compared to the flagellates, with lower decline rates of Chl a and maximum quantum yield of PSII. T. nordenskioeldii showed rapid growth during recovery throughout 8 weeks of dark incubation, whereas recovery of flagellates diminished within 4 weeks. Ratios of taxonomic marker pigments relative to Chl a of all species showed limited variation during 8 weeks of dark incubation. The experimentally observed enhanced dark survival of diatoms was in agreement with pigment observations during four polar nights (2013–2017) in Kongsfjorden, which showed increased relative diatom abundance during declining biomass (down to 0.02 mg Chl a m−3). Therefore, a period of prolonged darkness gives Arctic diatoms a head start during the early stages of the spring bloom. The taxon‐specific survival traits can influence the geographical distribution of diatoms and flagellates within the polar oceans and their phenology. Furthermore, the persistence of Chl a of nonviable phytoplankton during darkness might influence biomass estimates during the polar night

    Algal pigment patterns in different watermasses of the Atlantic sector of the Southern Ocean during fall 1987

    Get PDF
    During the autumn of 1987 a survey was carried out in the Atlantic sector of the Southern Ocean in order to study phytoplankton community structure in relation to hydrological features. The positions of the boundary zones, determined by means of hydrological and chemical properties (especially silicic acid) match with previous studies. The phytoplankton community structure was studied by means of algal pigment fingerprints. A cluster analysis of the main phytoplankton pigments revealed the presence of four distinctive phytoplankton communities in the area. In three cluster groups phytoflagellate pigments of different taxonomical groups were found which showed different relative abundance between the cluster groups. In between the Polar Front Zone and the Weddell Scotia Confluence a fourth group was found which was rich in diatoms as compared to the other cluster groups. High concentrations of the fucoxanthin related 19'-hexanoyloxyfucoxanthin indicated the relative importance of Prymnesiophyceae during fall in this area. The relative contribution of each taxonomical group to total phytoplankton biomass was estimated by using specific pigment ratios. This calculation showed that in this time of the year phytoflagellate biomass (especially Prymnesiophytes) surpasses diatom biomass
    • 

    corecore