616 research outputs found

    On the curvature of vortex moduli spaces

    Get PDF
    We use algebraic topology to investigate local curvature properties of the moduli spaces of gauged vortices on a closed Riemann surface. After computing the homotopy type of the universal cover of the moduli spaces (which are symmetric powers of the surface), we prove that, for genus g>1, the holomorphic bisectional curvature of the vortex metrics cannot always be nonnegative in the multivortex case, and this property extends to all Kaehler metrics on certain symmetric powers. Our result rules out an established and natural conjecture on the geometry of the moduli spaces.Comment: 25 pages; final version, to appear in Math.

    Dynamical algebra and Dirac quantum modes in Taub-NUT background

    Full text link
    The SO(4,1) gauge-invariant theory of the Dirac fermions in the external field of the Kaluza-Klein monopole is investigated. It is shown that the discrete quantum modes are governed by reducible representations of the o(4) dynamical algebra generated by the components of the angular momentum operator and those of the Runge-Lenz operator of the Dirac theory in Taub-NUT background. The consequence is that there exist central and axial discrete modes whose spinors have no separated variables.Comment: 17 pages, latex, no figures. Version to appear in Class.Quantum Gra

    Algorithms and literate programs for weighted low-rank approximation with missing data

    No full text
    Linear models identification from data with missing values is posed as a weighted low-rank approximation problem with weights related to the missing values equal to zero. Alternating projections and variable projections methods for solving the resulting problem are outlined and implemented in a literate programming style, using Matlab/Octave's scripting language. The methods are evaluated on synthetic data and real data from the MovieLens data sets

    New Integrable Sectors in Skyrme and 4-dimensional CP^n Model

    Get PDF
    The application of a weak integrability concept to the Skyrme and CPnCP^n models in 4 dimensions is investigated. A new integrable subsystem of the Skyrme model, allowing also for non-holomorphic solutions, is derived. This procedure can be applied to the massive Skyrme model, as well. Moreover, an example of a family of chiral Lagrangians providing exact, finite energy Skyrme-like solitons with arbitrary value of the topological charge, is given. In the case of CPnCP^n models a tower of integrable subsystems is obtained. In particular, in (2+1) dimensions a one-to-one correspondence between the standard integrable submodel and the BPS sector is proved. Additionally, it is shown that weak integrable submodels allow also for non-BPS solutions. Geometric as well as algebraic interpretations of the integrability conditions are also given.Comment: 23 page

    The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps

    Get PDF
    The most fruitful approach to studying low energy soliton dynamics in field theories of Bogomol'nyi type is the geodesic approximation of Manton. In the case of vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this approximation, and hence proved that it is valid in the low speed regime. His method employs energy estimates which rely on a key coercivity property of the Hessian of the energy functional of the theory under consideration. In this paper we prove an analogous coercivity property for the Hessian of the energy functional of a general sigma model with compact K\"ahler domain and target. We go on to prove a continuity property for our result, and show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive in the degree 1 sector. We present numerical evidence which suggests that the Hessian is globally coercive in a certain equivariance class of the degree n sector for n>1. We also prove that, within the geodesic approximation, a single CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded discussion of the main function spac

    Forced Topological Nontrivial Field Configurations

    Get PDF
    The motion of a one-dimensional kink and its energy losses are considered as a model of interaction of nontrivial topological field configurations with external fields. The approach is based on the calculation of the zero modes excitation probability in the external field. We study in the same way the interaction of the t'Hooft-Polyakov monopole with weak external fields. The basic idea is to treat the excitation of a monopole zero mode as the monopole displacement. The excitation is found perturbatively. As an example we consider the interaction of the t'Hooft-Polyakov monopole with an external uniform magnetic field.Comment: 18 pages, 3 Postscript figures, RevTe

    phi^4 Kinks - Gradient Flow and Dynamics

    Full text link
    The symmetric dynamics of two kinks and one antikink in classical (1+1)-dimensional ϕ4\phi^4 theory is investigated. Gradient flow is used to construct a collective coordinate model of the system. The relationship between the discrete vibrational mode of a single kink, and the process of kink-antikink pair production is explored.Comment: 23 pages, LaTex, 11 eps figures. We have added some clarification of our metho

    Cosmological Sphaleron from Real Tunneling and Its Fate

    Get PDF
    We show that the cosmological sphaleron of Einstein-Yang-Mills system can be produced from real tunneling geometries. The sphaleron will tend to roll down to the vacuum or pure gauge field configuration, when the universe evolves in the Lorentzian signature region with the sphaleron and the corresponding hypersurface being the initial data for the Yang-Mills field and the universe, respectively. However, we can also show that the sphaleron, although unstable, can be regarded as a pseudo-stable solution because its lifetime is even much greater than those of the universe.Comment: 20 pages, LaTex, article 12pt style, TIT/HEP-242/COSMO-3

    Dirac Spinor Waves and Solitons in Anisotropic Taub-NUT Spaces

    Get PDF
    We apply a new general method of anholonomic frames with associated nonlinear connection structure to construct new classes of exact solutions of Einstein-Dirac equations in five dimensional (5D)gravity. Such solutions are parametrized by off-diagonal metrics in coordinate (holonomic) bases, or, equivalently, by diagonal metrics given with respect to some anholonomic frames (pentads, or funfbiends, satisfing corresponding constraint relations). We consider two possibilities of generalization of the Taub NUT metric in order to obtain vacuum solutions of 5D Einsitein equations with effective renormalization of constants having distinguished anisotropies on an angular parameter or on extra dimension coordinate. The constructions are extended to solutions describing self-consistent propagations of 3D Dirac wave packets in 5D anisotropic Taub NUT spacetimes. We show that such anisotropic configurations of spinor matter can induce gravitational 3D solitons being solutions of Kadomtsev-Petviashvili or of sine-Gordon equations.Comment: revtex, 16 pages, version 4, affiliation changed, accepted to CQ
    • 

    corecore