4 research outputs found

    Accuracy of energy prediction methodologies

    Get PDF
    In the current market, the specific annual energy yield (kWh/kWp) of a PV system is gaining in importance due to its direct link to the financial returns for possible investors who typically demand an accuracy of 5% in this prediction. This paper focuses on the energy prediction of photovoltaic modules themselves, as there have been significant advances achieved with module technologies which affect the device physics in a way that might force the revisiting of device modelling. The paper reports the results of a round robin based evaluation of European modelling methodologies. The results indicate that the error in predicting energy yield for the same module at different locations was within 5% for most of the methodologies. However, this error increased significantly if the nominal nameplate rating is used in the characterization stage. For similar modules at the same location the uncertainties were much larger due to module-module variations

    Photovoltaic performance measurements in Europe: PV-catapult round robin tests

    Get PDF
    Two sets of modules have been sent around to different testing installations across Europe, one set to laboratories performing indoor calibrations and one set to laboratories performing outdoor power and energy ratings. The results show that for crystalline and polycrystalline devices, a very good agreement between laboratories has been achieved. A lower agreement between laboratories has been achieved for thin film devices and further need for research is identified

    Accuracy of Energy Prediction Methodologies

    Get PDF
    In the current market, the specific annual energy yield (kWh/kWp) of a PV system is gaining in importance due to its direct link to the financial returns for possible investors who typically demand an accuracy of 5% in this prediction. This paper focuses on the energy prediction of photovoltaic modules themselves, as there have been significant advances achieved with module technologies which affect the device physics in a way that might force the revisiting of device modelling. The paper reports the results of a round robin based evaluation of European modelling methodologies. The results indicate that the error in predicting energy yield for the same module at different locations was within 5% for most of the methodologies. However, this error increased significantly if the nominal nameplate rating is used in the characterization stage. For similar modules at the same location the uncertainties were much larger due to module-module variations

    Photovoltaic Performance Measurements in Europe: PV-Catapult Round Robin Tests

    No full text
    Two sets of modules have been sent around to different testing installations across Europe, one set to laboratories performing indoor calibrations and one set to laboratories performing outdoor power and energy ratings. The results show that for crystalline and polycrystalline devices, a very good agreement between laboratories has been achieved. A lower agreement between laboratories has been achieved for thin film devices and further need for research is identified
    corecore