1,776 research outputs found
Hair radioactivity as a measure of exposure to radioisotopes
Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle
The preparation, identification and properties of chlorophyll derivatives
In the investigation of 10-hydroxy chlorophylls a and b novel techniques included modification of chromatography and the use of fully-deuterated compounds isolated from fully-deuterated autotropic algae to determine the molecular structure of the chlorophylls
Proton induced radioactivities
Results are tabulated of the radioactivities produced by 4 Mev protons in targets of 7N, 8O, 20Ca, 24Cr, 27Co, 30Zn, 34Se, 42Mo, 46Pd, 48Cd, 49In. In most cases the reactions are of the p-n type, and lead to isotopes which emit either + or - electrons. A detailed study was made of O, Zn and Se. The reaction O18(p, n)F18 (107 min.) shows a threshold at 2.56 Mev and a positron energy of 0.74 Mev in good agreement with the energy relations. The cross section for the reaction at 4 Mev is about 2×10^-25 cm^2 and there is a resonance maximum at 3.55 Mev. The cross section for the reaction O16(p, γ)F17 is 4000 times smaller. The isomeric Br80 periods (17.4 min. and 4.45 hr.) are observed in the reaction Se80(p, n)Br80. At 4 Mev the ratio of the short to long period activities for infinite bombardment is about 15 but the thresholds are at about 3.0 and 3.2 Mev, respectively. The cross section for the reaction is about 0.6×10^-26 cm^2 at 4 Mev
Demonstration of detuned dual recycling at the Garching 30m laser interferometer
Dual recycling is an advanced optical technique to enhance the
signal-to-noise ratio of laser interferometric gravitational wave detectors in
a limited bandwidth. To optimise the center of this band with respect to
Fourier frequencies of expected gravitational wave signals detuned dual
recycling has to be implemented. We demonstrated detuned dual recycling on a
fully suspended 30m prototype interferometer. A control scheme that allows to
tune the detector to different frequencies will be outlined. Good agreement
between the experimental results and numerical simulations has been achieved.Comment: 9 page
Local-Oscillator Noise Coupling in Balanced Homodyne Readout for Advanced Gravitational Wave Detectors
The second generation of interferometric gravitational wave detectors are
quickly approaching their design sensitivity. For the first time these
detectors will become limited by quantum back-action noise. Several back-action
evasion techniques have been proposed to further increase the detector
sensitivity. Since most proposals rely on a flexible readout of the full
amplitude- and phase-quadrature space of the output light field, balanced
homodyne detection is generally expected to replace the currently used DC
readout. Up to now, little investigation has been undertaken into how balanced
homodyne detection can be successfully transferred from its ubiquitous
application in table-top quantum optics experiments to large-scale
interferometers with suspended optics. Here we derive implementation
requirements with respect to local oscillator noise couplings and highlight
potential issues with the example of the Glasgow Sagnac Speed Meter experiment,
as well as for a future upgrade to the Advanced LIGO detectors.Comment: 7 pages, 5 figure
A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris
The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections
Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity
We report on the first demonstration of a fully suspended 10m Fabry-Perot
cavity incorporating a waveguide grating as the coupling mirror. The cavity was
kept on resonance by reading out the length fluctuations via the
Pound-Drever-Hall method and employing feedback to the laser frequency. From
the achieved finesse of 790 the grating reflectivity was determined to exceed
99.2% at the laser wavelength of 1064\,nm, which is in good agreement with
rigorous simulations. Our waveguide grating design was based on tantala and
fused silica and included a ~20nm thin etch stop layer made of Al2O3 that
allowed us to define the grating depth accurately during the fabrication
process. Demonstrating stable operation of a waveguide grating featuring high
reflectivity in a suspended low-noise cavity, our work paves the way for the
potential application of waveguide gratings as mirrors in high-precision
interferometry, for instance in future gravitational wave observatories
Photon pressure induced test mass deformation in gravitational-wave detectors
A widely used assumption within the gravitational-wave community has so far
been that a test mass acts like a rigid body for frequencies in the detection
band, i.e. for frequencies far below the first internal resonance. In this
article we demonstrate that localized forces, applied for example by a photon
pressure actuator, can result in a non-negligible elastic deformation of the
test masses. For a photon pressure actuator setup used in the gravitational
wave detector GEO600 we measured that this effect modifies the standard
response function by 10% at 1 kHz and about 100% at 2.5 kHz
Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data
Herein the transient lunar phenomena (TLP) report database is subjected to a
discriminating statistical filter robust against sites of spurious reports, and
produces a restricted sample that may be largely reliable. This subset is
highly correlated geographically with the catalog of outgassing events seen by
the Apollo 15, 16 and Lunar Prospector alpha-particle spectrometers for
episodic Rn-222 gas release. Both this robust TLP sample and even the larger,
unfiltered sample are highly correlated with the boundary between mare and
highlands, as are both deep and shallow moonquakes, as well as Po-210, a
long-lived product of Rn-222 decay and a further tracer of outgassing. This
offers another significant correlation relating TLPs and outgassing, and may
tie some of this activity to sagging mare basalt plains (perhaps mascons).
Additionally, low-level but likely significant TLP activity is connected to
recent, major impact craters (while moonquakes are not), which may indicate the
effects of cracks caused by the impacts, or perhaps avalanches, allowing
release of gas. The majority of TLP (and Rn-222) activity, however, is confined
to one site that produced much of the basalt in the Procellarum Terrane, and it
seems plausible that this TLP activity may be tied to residual outgassing from
the formerly largest volcanic ffusion sites from the deep lunar interior. With
the coming in the next few years of robotic spacecraft followed by human
exploration, the study of TLPs and outgassing is both promising and imperiled.
We will have an unprecedented pportunity to study lunar outgassing, but will
also deal with a greater burden of anthropogenic lunar gas than ever produced.
There is a pressing need to study lunar atmosphere and its sources while still
pristine. [Abstract abridged.]Comment: 35 pages, 3 figures, submitted to Icarus. Other papers in series
found at http://www.astro.columbia.edu/~arlin/TLP
- …