605 research outputs found

    Interference between a large number of independent Bose-Einstein condensates

    Full text link
    We study theoretically the interference patterns produced by the overlap of an array of Bose-Einstein condensates that have no phase coherence among them. We show that density-density correlations at different quasimomenta, which play an important role in two-condensate interference, become negligible for large NN, where NN is the number of overlapping condensates. In order to understand the physics of this phenomenon, it is sufficient to consider the periodicity of the lattice and the statistical probability distribution of a random-walk problem. The average visibility of such interference patterns decreases as N1/2N^{-1/2} for large NN.Comment: 9 pages, 2 figure

    Cosmological Models with Shear and Rotation

    Get PDF
    Cosmological models involving shear and rotation are considered, first in the General Relat ivistic and then in the Newtonian framework with the aim of investigating singularities in them by using numerical and analytical techniques. The dynamics of these rotating models ar e studied. It is shown that singularities are unavoidable in such models and that the centr ifugal force arising due to rotation can never overcome the gravitational and shearing forc e over a length of time.Comment: 17 pages, 6 figures Journal Ref: J. Astrophys. Astr. (1999) 20, 79-8

    The Clusters AgeS Experiment (CASE). II. The Eclipsing Blue Straggler OGLEGC-228 in the Globular Cluster 47 Tuc

    Full text link
    We use photometric and spectroscopic observations of the eclipsing binary OGLEGC-228 (V228) to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, proper motion and distance, the system is a blue straggler member of the globular cluster 47 Tuc. Our analysis shows that V228 is a semi-detached Algol. We obtain M=1.512 +/- 0.022 Msun, R=1.357 +/- 0.019 Rsun, L=7.02 +/- 0.050 Lsun for the hotter and more luminous primary component and M=0.200 +/- 0.007 Msun, R=1.238 +/- 0.013 Rsun, L=1.57 +/- 0.09 Lsun for the Roche lobe filling secondary.Comment: 19 pages, 5 figures, AJ, in pres

    Exact solution for random walks on the triangular lattice with absorbing boundaries

    Full text link
    The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.Comment: 10 pages, Latex, IOP macro

    A cosmological model in Weyl-Cartan spacetime: I. Field equations and solutions

    Full text link
    In this first article of a series on alternative cosmological models we present an extended version of a cosmological model in Weyl-Cartan spacetime. The new model can be viewed as a generalization of a model developed earlier jointly with Tresguerres. Within this model the non-Riemannian quantities, i.e. torsion TαT^{\alpha} and nonmetricity QαβQ_{\alpha \beta}, are proportional to the Weyl 1-form. The hypermomentum Δαβ\Delta_{\alpha \beta} depends on our ansatz for the nonmetricity and vice versa. We derive the explicit form of the field equations for different cases and provide solutions for a broad class of parameters. We demonstrate that it is possible to construct models in which the non-Riemannian quantities die out with time. We show how our model fits into the more general framework of metric-affine gravity (MAG).Comment: 22 pages, 2 figures, uses IOP preprint styl

    New Path Equations in Absolute Parallelism Geometry

    Get PDF
    The Bazanski approach, for deriving the geodesic equations in Riemannian geometry, is generalized in the absolute parallelism geometry. As a consequence of this generalization three path equations are obtained. A striking feature in the derived equations is the appearance of a torsion term with a numerical coefficients that jumps by a step of one half from equation to another. This is tempting to speculate that the paths in absolute parallelism geometry might admit a quantum feature.Comment: 4 pages Latex file Journal Reference: Astrophysics and space science 228, 273, (1995

    Two-Dimensional Axisymmetric Collapse of Thermally Unstable Primordial Clouds

    Get PDF
    We have performed two-dimensional hydrodynamic simulations of the collapse of isolated axisymmetric clouds condensing via radiative cooling in a primordial background gas. In order to study the development of the so-called ``shape-instability'', we have considered two types of axisymmetric clouds, oblate and prolate clouds of various sizes and with axial ratios of 0.5Rc,R/Rc,z20.5 \leq {R_{\rm c,R}} /{R_{\rm c,z}} \leq 2. We find that the degree of oblateness or prolateness is enhanced during the initial cooling phase. But it can be reversed later, if the initial contrast in cooling times between the cloud gas and the background gas is much greater than one. In such cases an oblate cloud collapses to a structure composed of an outer thin disk and a central prolate component. A prolate cloud, on the other hand, becomes a thin cigar-shape structure with a central dense oblate component. The reversal of shape in the central part of the cooled clouds is due to supersonic motions either along the disk plane in the case of oblate clouds or along the symmetry axis in the case of prolate clouds. For a background gas of Th=1.7×106T_h=1.7\times 10^6K and n_h=0.1 \cm3 in a protogalactic halo environment, the mean density of the cloud gas that has cooled to 10410^4K increases to 100nh100 n_h or so, in our simulations where nonequilibrium cooling is adopted and the background gas cools too. The spherical Jeans mass of such gas is estimated to be about M_J \sim 5\times10^{7}\Msun. In order for cloud mass to exceed the Jeans mass and at the same time in order for the thermal instability to operate, the initial cloud size should be around 11.5lcool1 - 1.5 l_{\rm cool} where lcooll_{\rm cool} is the cooling length.Comment: 31 pages including 12 figures (reduced resolution), to appear in The Astrophysical Journal (v584 n2 ApJ February 20, 2003 issue). Pdf with full resolution figures can be downloaded from ftp://canopus.chungnam.ac.kr/ryu/ryu.pd

    Let's talk about varying G

    Full text link
    It is possible that fundamental constants may not be constant at all. There is a generally accepted view that one can only talk about variations of dimensionless quantities, such as the fine structure constant αee2/4πϵ0c\alpha_{\rm e}\equiv e^2/4\pi\epsilon_0\hbar c. However, constraints on the strength of gravity tend to focus on G itself, which is problematic. We stress that G needs to be multiplied by the square of a mass, and hence, for example, one should be constraining αgGmp2/c\alpha_{\rm g}\equiv G m_{\rm p}^2/\hbar c, where mpm_{\rm p} is the proton mass. Failure to focus on such dimensionless quantities makes it difficult to interpret the physical dependence of constraints on the variation of G in many published studies. A thought experiment involving talking to observers in another universe about the values of physical constants may be useful for distinguishing what is genuinely measurable from what is merely part of our particular system of units.Comment: 6 pages, Gravity Research Foundation essa
    corecore