236 research outputs found

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure

    Single-Pion Production in pp Collisions at 0.95 GeV/c (II)

    Get PDF
    The single-pion production reactions ppdπ+pp\to d\pi^+, ppnpπ+pp\to np\pi^+ and ppppπ0pp\to pp\pi^0 were measured at a beam momentum of 0.95 GeV/c (TpT_p \approx 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. Main emphasis is put on the presentation and discussion of the npπ+np\pi^+ channel, since the results on the other channels have already been published previously. The total and differential cross sections obtained are compared to theoretical calculations. In contrast to the ppπ0pp\pi^0 channel we find in the npπ+np\pi^+ channel a strong influence of the Δ\Delta excitation already at this energy close to threshold. In particular we find a (3cos2Θ+1)(3 cos^2\Theta + 1) dependence in the pion angular distribution, typical for a pure s-channel Δ\Delta excitation and identical to that observed in the dπ+d\pi^+ channel. Since the latter is understood by a s-channel resonance in the 1D2^1D_2 pnpn partial wave, we discuss an analogous scenario for the pnπ+pn\pi^+ channel

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    On the Production of π+π+\pi^+\pi^+ Pairs in pp Collisions at 0.8 GeV

    Get PDF
    Data accumulated recently for the exclusive measurement of the ppppπ+πpp\to pp\pi^+\pi^- reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the ppnnπ+π+pp \to nn\pi^+\pi^+ reaction channel. The latter is expected to be the only ππ\pi\pi production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the ππ\pi\pi production process. No single event has been found, which meets all conditions for being a candidate for the ppnnπ+π+pp \to nn \pi^+\pi^+ reaction. This gives an upper limit for the cross section of 0.16 μ\mub (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy

    Total Cross Section of the Reaction pp \to pK^+\Lambda Close to Threshold

    Full text link
    The energy dependence of the total cross section for the pp \to pK^+\Lambda reaction was measured in the threshold region covering the excess energy range up to 7MeV. Existing model calculations describe the slope of the measured cross sections well, but are too low by a factor of two to three in rate. The data were used for a precise determination of the beam momentum of the COSY-synchrotron.Comment: 11 pages, 5 figure

    Two-Pion Production in Proton-Proton Collisions with Polarized Beam

    Get PDF
    The two-pion production reaction ppppπ+π\vec{p}p\to pp\pi^+\pi^- was measured with a polarized proton beam at TpT_p \approx 750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed pulse technique for Quirl and central calorimeter provided positive π+\pi^+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing power values up to AyA_y = 0.3

    Past, present and future of chamois science

    Get PDF
    The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two spe- cies, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contri- butions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different popu- lations and subspecies are still needed to ensure a successful future for chamois research and conservation

    Influence of N*-resonances on hyperon production in the channel pp->K+ Lambda p at 2.95, 3.20 and 3.30 GeV/c beam momentum

    Full text link
    Hyperon production in the threshold region was studied in the reaction pp -> K+Lp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at the three different beam momenta of p_beam=2.95, 3.20 and 3.30 GeV/c, corresponding to excess energies of epsilon=204, 285 and 316 MeV, respectively. Total cross-sections were deduced for the three beam momenta to be 23.9+/-0.8 +/-2.0 ub, 28.4+/-1.3 +/-2.2 ub and 35.0+/-1.3 +/-3.0 ub. Differential observables including Dalitz plots were obtained. The analysis of the Dalitz plots reveals a strong influence of the N(1650)-resonance at p_beam=2.95 GeV/c, whereas for the higher momenta an increasing relative contribution of the N(1710)- and/or of the N(1720)-resonance was observed. In addition, the pL-final-state interaction turned out to have a significant influence on the Dalitz plot distribution.Comment: accepted for publication at Physics Letters B; some minor text changes were done; also the scale of the ordinates of figure 9 has been changed
    corecore