8,057 research outputs found
A determination of the radio-planetary frame tie from comparison of Earth orientation parameters
The orientation of the reference frame of radio source catalogs relative to that of planetary ephemerides, or 'frame tie,' can be a major systematic error source for interplanetary spacecraft orbit determination. This work presents a method of determining the radio-planetary frame tie from a comparison of very long baseline interferometry (VLBI) and lunar laser ranging (LLR) station coordinate and earth orientation parameter estimates. A frame tie result is presented with an accuracy of 25 nrad
Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables
Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit
Photon statistical limitations for daytime optical tracking
Tracking of interplanetary spacecraft equipped with optical communication systems by using astrometric instruments is being investigated by JPL. Existing instruments are designed to work at night and, for bright sources, are limited by tropospheric errors. To provide full coverage of the solar system, astrometric tracking instruments must either be capable of daytime operation or be space-based. The integration times necessary for the ground-based daytime photon statistical errors to reach a given accuracy level (5 to 50 nanoradians) were computed for an ideal astrometric instrument. The required photon statistical integration times are found to be shorter than the tropospheric integrations times for the ideal detector. Since the astrometric need not be limited by photon statistics even under daytime conditions, it may be fruitful to investigate instruments for daytime optical tracking
Using BATSE to measure gamma-ray burst polarization
We describe a technique for measuring the polarization of hard x-rays from γ-ray bursts based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Although the BATSE design (with its large field-of-view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data
Analysing powers for the reaction and for np elastic scattering from 270 to 570 MeV
The analysing power of the reaction for neutron energies between threshold and 570 MeV has been determined
using a transversely polarised neutron beam at PSI. The reaction has been
studied in a kinematically complete measurement using a time-of-flight
spectrometer with large acceptance. Analysing powers have been determined as a
function of the c.m. pion angle in different regions of the proton-proton
invariant mass. They are compared to other data from the reactions and . The np elastic scattering analysing power was determined as a
by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-
The reaction from threshold up to 570 MeV
The reaction has been studied in a
kinematically complete measurement with a large acceptance time-of-flight
spectrometer for incident neutron energies between threshold and 570 MeV. The
proton-proton invariant mass distributions show a strong enhancement due to the
pp() final state interaction. A large anisotropy was found in the
pion angular distributions in contrast to the reaction . At small energies, a large forward/backward asymmetry has been
observed. From the measured integrated cross section , the isoscalar cross section has been extracted.
Its energy dependence indicates that mainly partial waves with Sp final states
contribute. Note: Due to a coding error, the differential cross sections as shown in Fig. 9 are too small by a factor of two, and
inn Table 3 the differential cross sections
are too large by a factor of . The integrated cross sections and all
conclusions remain unchanged. A corresponding erratum has been submitted and
accepted by European Physics Journal.Comment: 18 pages, 16 figure
A balloon-borne imaging gamma-ray telescope
A balloon-borne coded-aperture gamma-ray telescope for galactic and extragalactic astronomy observations is described. The instrument, called Gamma Ray Imaging Payload (GRIP), is designed for measurements in the energy range from 30 keV to 5 MeV with an angular resolution of 0.6 deg over a 20 deg field of view. Distinguishing characteristics of the telescope are a rotating hexagonal coded-aperture mask and a thick NaI scintillation camera. Rotating hexagonal coded-apertures and the development of thick scintillation cameras are discussed
Long-term source monitoring with BATSE
The uncollimated Burst and Transient Source Experiment (BATSE) large area detectors (LADs) are well suited to nearly continuous monitoring of the stronger hard x-ray sources, and time series analysis for pulsars. An overview of the analysis techniques presently being applied to the data are discussed, including representative observations of the Crab Nebula, Crab pulsar, and summaries of the sources detected to data. Results of a search for variability in the Crab Pulsar pulse profile are presented
Polarised target for Drell-Yan experiment in COMPASS at CERN, part I
In the polarised Drell-Yan experiment at the COMPASS facility in CERN pion
beam with momentum of 190 GeV/c and intensity about pions/s interacted
with transversely polarised NH target. Muon pairs produced in Drel-Yan
process were detected. The measurement was done in 2015 as the 1st ever
polarised Drell-Yan fixed target experiment. The hydrogen nuclei in the
solid-state NH were polarised by dynamic nuclear polarisation in 2.5 T
field of large-acceptance superconducting magnet. Large helium dilution
cryostat was used to cool the target down below 100 mK. Polarisation of
hydrogen nuclei reached during the data taking was about 80 %. Two oppositely
polarised target cells, each 55 cm long and 4 cm in diameter were used.
Overview of COMPASS facility and the polarised target with emphasis on the
dilution cryostat and magnet is given. Results of the polarisation measurement
in the Drell-Yan run and overviews of the target material, cell and dynamic
nuclear polarisation system are given in the part II.Comment: 4 pages, 2 figures, Proceedings of the 22nd International Spin
Symposium, Urbana-Champaign, Illinois, USA, 25-30 September 201
Hard X-ray variability of the black-hole candidate GRO J0422+32 during its 1992 outburst
We have studied the hard X-ray variability of the soft X-ray transient GRO
J0422+32 with BATSE in the 20-100 keV energy band. Our analysis covers 180 days
following the first X-ray detection of the source on 1992 August 5, fully
covering its primary and secondary X-ray outburst. We computed power density
spectra (PDSs) in the 20-50, 50-100, and 20-100 keV energy bands, in the
frequency interval 0.002-0.488 Hz. The PDSs of GRO J0422+32 are approximately
flat up to a break frequency, and decay as a power law above, with index ~1.
The canonical anticorrelation between the break frequency and the power density
at the break, observed in Cyg X-1 and other BHCs in the low state, is not
observed in the PDSs of GRO J0422+32. We compare our results with those of
similar variability studies of Cyg X-1. The relation between the spectral slope
and the amplitude of the X-ray variations of GRO J0422+32 is similar to that of
Cyg X-1; however, the relation between the hard X-ray flux and the amplitude of
its variation is opposite to what has been found in Cyg X-1. Phase lags between
the X-ray flux variations of GRO J0422+32 at high and low photon energies,
could only be derived during the first 30 days of its outburst. During this
period, the variations in the 50-100 keV lag those in the 20-50 keV energy band
by an approximately constant phase difference of 0.039(3) rad in the frequency
interval 0.02-0.20 Hz.Comment: 33 pages, including 14 postscript figures, AASTEX. To appear in ApJ
1999, March 1, vol. 513 #
- …