163 research outputs found
Active Brownian particles with velocity-alignment and active fluctuations
We consider a model of active Brownian particles with velocity-alignment in
two spatial dimensions with passive and active fluctuations. Hereby, active
fluctuations refers to purely non-equilibrium stochastic forces correlated with
the heading of an individual active particle. In the simplest case studied
here, they are assumed as independent stochastic forces parallel (speed noise)
and perpendicular (angular noise) to the velocity of the particle. On the other
hand, passive fluctuations are defined by a noise vector independent of the
direction of motion of a particle, and may account for example for thermal
fluctuations.
We derive a macroscopic description of the active Brownian particle gas with
velocity-alignment interaction. Hereby, we start from the individual based
description in terms of stochastic differential equations (Langevin equations)
and derive equations of motion for the coarse grained kinetic variables
(density, velocity and temperature) via a moment expansion of the corresponding
probability density function.
We focus here in particular on the different impact of active and passive
fluctuations on the onset of collective motion and show how active fluctuations
in the active Brownian dynamics can change the phase-transition behaviour of
the system. In particular, we show that active angular fluctuation lead to an
earlier breakdown of collective motion and to emergence of a new bistable
regime in the mean-field case.Comment: 5 figures, 22 pages, submitted to New Journal of Physic
Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?
A unified semiclassical time propagator is used to calculate the
semiclassical time-correlation function in three cartesian dimensions for a
particle moving in an attractive Coulomb potential. It is demonstrated that
under these conditions the singularity of the potential does not cause any
difficulties and the Coulomb interaction can be treated as any other
non-singular potential. Moreover, by virtue of our three-dimensional
calculation, we can explain the discrepancies between previous semiclassical
and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS
Semiclassical description of multiphoton processes
We analyze strong field atomic dynamics semiclassically, based on a full
time-dependent description with the Hermann-Kluk propagator. From the
properties of the exact classical trajectories, in particular the accumulation
of action in time, the prominent features of above threshold ionization (ATI)
and higher harmonic generation (HHG) are proven to be interference phenomena.
They are reproduced quantitatively in the semiclassical approximation.
Moreover, the behavior of the action of the classical trajectories supports the
so called strong field approximation which has been devised and postulated for
strong field dynamics.Comment: 10 pages, 11 figure
Quantum carpets woven by Wigner functions
The dynamics of many different quantum systems is characterized by a regular net of minima and maxima of probability stretching out in a spacetime representation. We offer an explanation to this phenomenon in terms of the Wigner function. This approach illustrates very clearly the crucial role played by interference
High Diversity, Low Disparity and Small Body Size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic Boundary
Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories
Traffic and Related Self-Driven Many-Particle Systems
Since the subject of traffic dynamics has captured the interest of
physicists, many astonishing effects have been revealed and explained. Some of
the questions now understood are the following: Why are vehicles sometimes
stopped by so-called ``phantom traffic jams'', although they all like to drive
fast? What are the mechanisms behind stop-and-go traffic? Why are there several
different kinds of congestion, and how are they related? Why do most traffic
jams occur considerably before the road capacity is reached? Can a temporary
reduction of the traffic volume cause a lasting traffic jam? Under which
conditions can speed limits speed up traffic? Why do pedestrians moving in
opposite directions normally organize in lanes, while similar systems are
``freezing by heating''? Why do self-organizing systems tend to reach an
optimal state? Why do panicking pedestrians produce dangerous deadlocks? All
these questions have been answered by applying and extending methods from
statistical physics and non-linear dynamics to self-driven many-particle
systems. This review article on traffic introduces (i) empirically data, facts,
and observations, (ii) the main approaches to pedestrian, highway, and city
traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and
macroscopic (fluid-dynamic) models. Attention is also paid to the formulation
of a micro-macro link, to aspects of universality, and to other unifying
concepts like a general modelling framework for self-driven many-particle
systems, including spin systems. Subjects such as the optimization of traffic
flows and relations to biological or socio-economic systems such as bacterial
colonies, flocks of birds, panics, and stock market dynamics are discussed as
well.Comment: A shortened version of this article will appear in Reviews of Modern
Physics, an extended one as a book. The 63 figures were omitted because of
storage capacity. For related work see http://www.helbing.org
- …