8,608 research outputs found

    Strong Tunneling and Coulomb Blockade in a Single-Electron Transistor

    Full text link
    We have developed a detailed experimental study of a single-electron transistor in a strong tunneling regime. Although weakened by strong charge fluctuations, Coulomb effects were found to persist in all samples including one with the effective conductance 8 times higher than the quantum value (6.45 kΩ\Omega)−1^{-1}. A good agreement between our experimental data and theoretical results for the strong tunneling limit is found. A reliable operation of transistors with conductances 3-4 times larger than the quantum value is demonstrated.Comment: revtex, 4 page

    Point Charge Self-Energy in the General Relativity

    Full text link
    Singularities in the metric of the classical solutions to the Einstein equations (Schwarzschild, Kerr, Reissner -- Nordstr\"om and Kerr -- Newman solutions) lead to appearance of generalized functions in the Einstein tensor that are not usually taken into consideration. The generalized functions can be of a more complex nature than the Dirac \d-function. To study them, a technique has been used based on a limiting solution sequence. The solutions are shown to satisfy the Einstein equations everywhere, if the energy-momentum tensor has a relevant singular addition of non-electromagnetic origin. When the addition is included, the total energy proves finite and equal to mc2mc^2, while for the Kerr and Kerr--Newman solutions the angular momentum is mcamc {\bf a}. As the Reissner--Nordstr\"om and Kerr--Newman solutions correspond to the point charge in the classical electrodynamics, the result obtained allows us to view the point charge self-energy divergence problem in a new fashion.Comment: VI Fridmann Seminar, France, Corsica, Corgeze, 2004, LaTeX, 6 pages, 2 fige

    Aharonov-Bohm oscillations of a particle coupled to dissipative environments

    Full text link
    The amplitude of the Bohm-Aharonov oscillations of a particle moving around a ring threaded by a magnetic flux and coupled to different dissipative environments is studied. The decay of the oscillations when increasing the radius of the ring is shown to depend on the spatial features of the coupling. When the environment is modelled by the Caldeira-Leggett bath of oscillators, or the particle is coupled by the Coulomb potential to a dirty electron gas, interference effects are suppressed beyond a finite length, even at zero temperature. A finite renormalization of the Aharonov-Bohm oscillations is found for other models of the environment.Comment: 6 page

    Full Counting Statistics for a Single-Electron Transistor, Non-equilibrium Effects at Intermediate Conductance

    Full text link
    We evaluate the current distribution for a single-electron transistor with intermediate strength tunnel conductance. Using the Schwinger-Keldysh approach and the drone (Majorana) fermion representation we account for the renormalization of system parameters. Nonequilibrium effects induce a lifetime broadening of the charge-state levels, which suppress large current fluctuations.Comment: 4 pages, 1 figur

    Dephasing Times in a Non-degenerate Two-Dimensional Electron Gas

    Full text link
    Studies of weak localization by scattering from vapor atoms for electrons on a liquid helium surface are reported. There are three contributions to the dephasing time. Dephasing by the motion of vapor atoms perpendicular to the surface is studied by varying the holding field to change the characteristic width of the electron layer at the surface. A change in vapor density alters the quasi-elastic scattering length and the dephasing due to the motion of atoms both perpendicular and parallel to the surface. Dephasing due to the electron-electron interaction is dependent on the electron density.Comment: 4 pages, Revte

    Snow metamorphism: a fractal approach

    Full text link
    Snow is a porous disordered medium consisting of air and three water phases: ice, vapour and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameter. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level

    Decoherence of Schrodinger cat states in a Luttinger liquid

    Full text link
    Schrodinger cat states built from quantum superpositions of left or right Luttinger fermions located at different positions in a spinless Luttinger liquid are considered. Their decoherence rates are computed within the bosonization approach using as environments the quantum electromagnetic field or two or three dimensionnal acoustic phonon baths. Emphasis is put on the differences between the electromagnetic and acoustic environments.Comment: 22 pages revtex4, 7 figures in a separate PS fil

    Absence of electron dephasing at zero temperature

    Full text link
    Dephasing of electrons due to the electron-electron interaction has recently been the subject of a controversial debate, with different calculations yielding mutually incompatible results. In this paper we prove, by means of Ward identities, that neither a Coulomb interaction nor a short-ranged model interaction can lead to phase breaking at zero temperature in spatial dimensions d>2.Comment: 7 pp., LaTeX, no figs, final version as publishe

    Parity-Affected Superconductivity in Ultrasmall Metallic Grains

    Full text link
    We investigate the breakdown of BCS superconductivity in {\em ultra}\/small metallic grains as a function of particle size (characterized by the mean spacing dd between discrete electronic eigenstates), and the parity (PP = even/odd) of the number of electrons on the island. Assuming equally spaced levels, we solve the parity-dependent BCS gap equation for the order parameter ΔP(d,T)\Delta_P (d,T). Both the T=0T=0 critical level spacing dc,Pd_{c,P} and the critical temperature Tc,P(d)T_{c,P} (d) at which ΔP=0\Delta_P = 0 are parity dependent, and both are so much smaller in the odd than the even case that these differences should be measurable in current experiments.Comment: 4 pages RevTeX, 1 encapsulated postscript figure, submitted to Physical Review Letter

    Nonequilibrium theory of Coulomb blockade in open quantum dots

    Full text link
    We develop a non-equilibrium theory to describe weak Coulomb blockade effects in open quantum dots. Working within the bosonized description of electrons in the point contacts, we expose deficiencies in earlier applications of this method, and address them using a 1/N expansion in the inverse number of channels. At leading order this yields the self-consistent potential for the charging interaction. Coulomb blockade effects arise as quantum corrections to transport at the next order. Our approach unifies the phase functional and bosonization approaches to the problem, as well as providing a simple picture for the conductance corrections in terms of renormalization of the dot's elastic scattering matrix, which is obtained also by elementary perturbation theory. For the case of ideal contacts, a symmetry argument immediately allows us to conclude that interactions give no signature in the averaged conductance. Non-equilibrium applications to the pumped current in a quantum pump are worked out in detail.Comment: Published versio
    • …
    corecore