1,643 research outputs found

    Magnetic and thermal properties of the S = 1/2 zig-zag spin-chain compound In2VO5

    Full text link
    Static magnetic susceptibility \chi, ac susceptibility \chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and \chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are reported. A Curie-Wiess fit to the \chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the \chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) \chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the \chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference \Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in \Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.Comment: 6 pages, 7 figures, 1 tabl

    High superconducting anisotropy and weak vortex pinning in Co doped LaFeAsO

    Full text link
    Here, we present an electrical transport study in single crystals of LaFe0.92_{0.92}Co0.08_{0.08}AsO (Tc9.1T_c \simeq 9.1 K) under high magnetic fields. In contrast to most of the previously reported Fe based superconductors, and despite its relatively low TcT_c, LaFe1x_{1-x}Cox_xAsO shows a superconducting anisotropy which is comparable to those seen for instance in the cuprates or γH=Hc2ab/Hc2c=mc/mab9\gamma_H = H_{c2}^{ab}/H_{c2}^{c} = m_c/m_{ab} \simeq 9, where mc/mabm_c/m_{ab} is the effective mass anisotropy. Although, in the present case and as in all Fe based superconductors, γ1\gamma \rightarrow 1 as T0T \rightarrow 0. Under the application of an external field, we also observe a remarkable broadening of the superconducting transition particularly for fields applied along the inter-planar direction. Both observations indicate that the low dimensionality of LaFe1x_{1-x}Cox_xAsO is likely to lead to a more complex vortex phase-diagram when compared to the other Fe arsenides and consequently, to a pronounced dissipation associated with the movement of vortices in a possible vortex liquid phase. When compared to, for instance, F-doped compounds pertaining to same family, we obtain rather small activation energies for the motion of vortices. This suggests that the disorder introduced by doping LaFeAsO with F is more effective in pinning the vortices than alloying it with Co.Comment: 7 figures, 7 pages, Phys. Rev. B (in press

    Low-Temperature Rapid Synthesis and Superconductivity of Fe-Based Oxypnictide Superconductors

    Full text link
    we were able to develop a novel method to synthesize Fe-based oxypnictide superconductors. By using LnAs and FeO as the starting materials and a ball-milling process prior to solid-state sintering, Tc as high as 50.7 K was obtained with the sample of Sm 0.85Nd0.15FeAsO0.85F0.15 prepared by sintering at temperatures as low as 1173 K for times as short as 20 min.Comment: 2 pages,2 figures, 1 tabl

    Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures

    Full text link
    We present the results of electrically-detected magnetic resonance (EDMR) experiments on silicon with ion-implanted phosphorus nanostructures, performed at 5 K. The devices consist of high-dose implanted metallic leads with a square gap, into which Phosphorus is implanted at a non-metallic dose corresponding to 10^17 cm^-3. By restricting this secondary implant to a 100 nm x 100 nm region, the EDMR signal from less than 100 donors is detected. This technique provides a pathway to the study of single donor spins in semiconductors, which is relevant to a number of proposals for quantum information processing.Comment: 9 pages, 3 figure

    Probing fractal magnetic domains on multiple length scales in Nd2Fe14B

    Get PDF
    Using small-angle neutron scattering, we demonstrate that the complex magnetic domain patterns at the surface of Nd2Fe14B, revealed by quantitative Kerr and Faraday microscopy, propagate into the bulk and exhibit structural features with dimensions down to 6 nm, the domain wall thickness. The observed fractal nature of the domain structures provides an explanation for the anomalous increase in the bulk magnetization of Nd2Fe14B below the spin-reorientation transition. These measurements open up a rich playground for studies of fractal structures in highly anisotropic magnetic systems.Comment: Accepted for publication in Phys. Rev. Lett. (4 pages, 4 figures

    Cation, dipole, and spin order in Pb(Fe2/3W1/3)O3-based magnetoelectric multiferroic compounds

    Get PDF
    Long range 1:1 cation order was developed in Pb(Fe2(1−x)/3Sc2x/3W1/3)O3solid solution compounds by high temperature solid state reaction. It is found that the degree of cation order directly influences the saturation magnetization in these single phase compounds. A high saturation magnetization (∼0.61μB/f.u.) was observed for x=0.15 at 10Kunder 5T. A ferrimagnetic structure was suggested to take into account for the observed magnetic behavior. These compounds also display a saturated electrical polarization of ∼15μC/cm2 at 40kV/cm at 120K

    Interplay between Fe and Nd magnetism in NdFeAsO single crystals

    Full text link
    The structural and magnetic phase transitions have been studied on NdFeAsO single crystals by neutron and x-ray diffraction complemented by resistivity and specific heat measurements. Two low-temperature phase transitions have been observed in addition to the tetragonal-to-orthorhombic transition at T_S = 142 K and the onset of antiferromagnetic (AFM) Fe order below T_N = 137 K. The Fe moments order AFM in the well-known stripe-like structure in the (ab) plane, but change from AFM to ferromagnetic (FM) arrangement along the c direction below T* = 15 K accompanied by the onset of Nd AFM order below T_Nd = 6 K with this same AFM configuration. The iron magnetic order-order transition in NdFeAsO accentuates the Nd-Fe interaction and the delicate balance of c-axis exchange couplings that results in AFM in LaFeAsO and FM in CeFeAsO and PrFeAsO.Comment: revised; 4 pages, 3 figures; accepted for publication in Phys. Rev.

    Discovery of a binary icosahedral quasicrystal in Sc12_12Zn88_88

    Full text link
    We report the discovery of a new binary icosahedral phase in a Sc-Zn alloy obtained through solution-growth, producing millimeter-sized, facetted, single grain, quasicrystals that exhibit different growth morphologies, pentagonal dodecahedra and rhombic triacontahedra, under only marginally different growth conditions. These two morphologies manifest different degrees of quasicrystalline order, or phason strain. The discovery of i-Sc12_12Zn88_88 suggests that a reexamination of binary phase diagrams at compositions close to crystalline approximant structures may reveal other, new binary quasicrystalline phases.Comment: Incorrect spelling in author list resolve

    Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering

    Get PDF
    The phonon dispersion was measured at room temperature along (0,0,L) in the tetragonal phase of LaFeAsO using inelastic x-ray scattering. Spin-polarized first-principles calculations imposing various types of antiferromagnetic order are in better agreement with the experimental results than nonmagnetic calculations, although the measurements were made well above the magnetic ordering temperature, T_N. Splitting observed between two A_{1g} phonon modes at 22 and 26 meV is only observed in spin-polarized calculations. Magneto-structural effects similar to those observed in the AFe_2As_2 materials are confirmed present in LaFeAsO. The presence of Fe-spin is necessary to find reasonable agreement of the calculations with the measured spectrum well above T_N. On-site Fe and As force constants show significant softening compared to nonmagnetic calculations, however an investigation of the real-space force constants associates the magnetoelastic coupling with a complex renormalization instead of softening of a specific pairwise force.Comment: 7 pages, 4 figure

    The static quark-antiquark potential in QCD to three loops

    Get PDF
    The static potential between an infinitely heavy quark and antiquark is derived in the framework of perturbative QCD to three loops by performing a full calculation of the two-loop diagrams and using the renormalization group. The contribution of massless fermions is included.Comment: Latex, 11 pages, 3 figures included. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ . Revised version, essentially identical to the version published in Physical Review Letter
    corecore