1,728 research outputs found

    High Temperature Superconductivity: the explanation

    Full text link
    Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question "Is there an explanation?" [Nature v 327 (1987) 185] expressed a view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with the electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra (ARPES), with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then the controversial issue of whether the electron-phonon interaction (EPI) is crucial for high-temperature superconductivity or weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Froehlich) EPI, and that the theory is fully compatible with the key experiments.Comment: 8 pages, 2 figures, invited comment to Physica Script

    Coherent `ab' and `c' transport theory of high-TcT_{c} cuprates

    Full text link
    We propose a microscopic theory of the `cc'-axis and in-plane transport of copper oxides based on the bipolaron theory and the Boltzmann kinetics. The fundamental relationship between the anisotropy and the spin susceptibility is derived, ρc(T,x)/ρab(T,x)x/Tχs(T,x)\rho_{c}(T,x)/\rho_{ab}(T,x)\sim x/\sqrt{T}\chi_{s}(T,x). The temperature (T)(T) and doping (x)(x) dependence of the in-plane, ρab\rho_{ab} and out-of-plane, ρc\rho_{c} resistivity and the spin susceptibility, χs\chi_{s} are found in a remarkable agreement with the experimental data in underdoped, optimally and overdoped La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} for the entire temperature regime from TcT_{c} up to 800K800K. The normal state gap is explained and its doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques

    Theory of Superconducting TcT_{c} of doped fullerenes

    Get PDF
    We develop the nonadiabatic polaron theory of superconductivity of MxC60M_{x}C_{60} taking into account the polaron band narrowing and realistic electron-phonon and Coulomb interactions. We argue that the crossover from the BCS weak-coupling superconductivity to the strong-coupling polaronic and bipolaronic superconductivity occurs at the BCS coupling constant λ1\lambda\sim 1 independent of the adiabatic ratio, and there is nothing ``beyond'' Migdal's theorem except small polarons for any realistic electron-phonon interaction. By the use of the polaronic-type function and the ``exact'' diagonalization in the truncated Hilbert space of vibrons (``phonons'') we calculate the ground state energy and the electron spectral density of the C60C_{60}^{-} molecule. This allows us to describe the photoemission spectrum of C60C_{60}^{-} in a wide energy region and determine the electron-phonon interaction. The strongest coupling is found with the high-frequency pinch Ag2A_{g2} mode and with the Frenkel exciton. We clarify the crucial role of high-frequency bosonic excitations in doped fullerenes which reduce the bare bandwidth and the Coulomb repulsion allowing the intermediate and low-frequency phonons to couple two small polarons in a Cooper pair. The Eliashberg-type equations are solved for low-frequency phonons. The value of the superconducting TcT_{c}, its pressure dependence and the isotope effect are found to be in a remarkable agreement with the available experimental data.Comment: 20 pages, Latex, 4 figures available upon reques

    Reality conditions for Ashtekar gravity from Lorentz-covariant formulation

    Full text link
    We show the equivalence of the Lorentz-covariant canonical formulation considered for the Immirzi parameter β=i\beta=i to the selfdual Ashtekar gravity. We also propose to deal with the reality conditions in terms of Dirac brackets derived from the covariant formulation and defined on an extended phase space which involves, besides the selfdual variables, also their anti-selfdual counterparts.Comment: 14 page

    Superlight small bipolarons

    Get PDF
    Recent angle-resolved photoemission spectroscopy (ARPES) has identified that a finite-range Fr\"ohlich electron-phonon interaction (EPI) with c-axis polarized optical phonons is important in cuprate superconductors, in agreement with an earlier proposal by Alexandrov and Kornilovitch. The estimated unscreened EPI is so strong that it could easily transform doped holes into mobile lattice bipolarons in narrow-band Mott insulators such as cuprates. Applying a continuous-time quantum Monte-Carlo algorithm (CTQMC) we compute the total energy, effective mass, pair radius, number of phonons and isotope exponent of lattice bipolarons in the region of parameters where any approximation might fail taking into account the Coulomb repulsion and the finite-range EPI. The effects of modifying the interaction range and different lattice geometries are discussed with regards to analytical strong-coupling/non-adiabatic results. We demonstrate that bipolarons can be simultaneously small and light, provided suitable conditions on the electron-phonon and electron-electron interaction are satisfied. Such light small bipolarons are a necessary precursor to high-temperature Bose-Einstein condensation in solids. The light bipolaron mass is shown to be universal in systems made of triangular plaquettes, due to a novel crab-like motion. Another surprising result is that the triplet-singlet exchange energy is of the first order in the hopping integral and triplet bipolarons are heavier than singlets in certain lattice structures at variance with intuitive expectations. Finally, we identify a range of lattices where superlight small bipolarons may be formed, and give estimates for their masses in the anti-adiabatic approximation.Comment: 31 pages. To appear in J. Phys.: Condens. Matter, Special Issue 'Mott's Physics

    Diamagnetism of real-space pairs above Tc in hole doped cuprates

    Full text link
    The nonlinear normal state diamagnetism reported by Lu Li et al. [Phys. Rev. B 81, 054510 (2010)] is shown to be incompatible with an acclaimed Cooper pairing and vortex liquid above the resistive critical temperature. Instead it is perfectly compatible with the normal state Landau diamagnetism of real-space composed bosons, which describes the nonlinear magnetization curves in less anisotropic cuprates La-Sr-Cu-O (LSCO) and Y-Ba-Cu-O (YBCO) as well as in strongly anisotropic bismuth-based cuprates in the whole range of available magnetic fields.Comment: 4 pages, 4 figure

    Theory of Extrinsic and Intrinsic Tunnelling in Cuprate Superconductors

    Full text link
    A theory capable of explaining intrinsic and extrinsic tunnelling conductance in underdoped cuprates has been devised that accounts for the existence of two energy scales, their temperature and doping dependencies. The asymmetry and inhomogeneity seen in extrinsic (normal metal - superconductor (NS)) tunnelling and the normal-state gapped intrinsic (SS) conductance is explained, as well as the superconducting gap and normal state pseudogap and the temperature dependence of the full gap.Comment: 14 pages, 10 figures, misprints correcte

    Lorenz number in high Tc superconductors: evidence for bipolarons

    Get PDF
    Strong electron-phonon interaction in cuprates has gathered support over the last decade in a number of experiments. While phonons remain almost unrenormalised, electrons are transformed into itinerent bipolarons and thermally excited polarons when the electron-phonon interaction is strong. We calculate the Lorenz number of the system to show that the Wiedemann-Franz law breaks down because of the interference of polaron and bipolaron contributions in the heat flow. The model fits numerically the experimental Hall Lorenz number, which provides a direct evidence for bipolarons in the cuprates.Comment: 4 page, 1 figur

    Bose-Einstein condensation of strongly correlated electrons and phonons in cuprate superconductors

    Full text link
    The long-range Froehlich electron-phonon interaction has been identified as the most essential for pairing in high-temperature superconductors owing to poor screening, as is now confirmed by optical, isotope substitution, recent photoemission and some other measurements. I argue that low energy physics in cuprate superconductors is that of superlight small bipolarons, which are real-space hole pairs dressed by phonons in doped charge-transfer Mott insulators. They are itinerant quasiparticles existing in the Bloch states at low temperatures as also confirmed by continuous-time quantum Monte-Carlo algorithm (CTQMC) fully taking into account realistic Coulomb and long-range Froehlich interactions. Here I suggest that a parameter-free evaluation of Tc, unusual upper critical fields, the normal state Nernst effect, diamagnetism, the Hall-Lorenz numbers and giant proximity effects strongly support the three-dimensional (3D) Bose-Einstein condensation of mobile small bipolarons with zero off-diagonal order parameter above the resistive critical temperature Tc at variance with phase fluctuation scenarios of cuprates.Comment: 35 pages, 10 figures, to appear in the special volume of Journal of Physics: Condensed Matte

    Degenerate Plebanski Sector and Spin Foam Quantization

    Full text link
    We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact ensures that its spin foam quantization is given by the SU(2) Crane-Yetter model and allows to test various approaches of imposing the simplicity constraints. Our analysis strongly suggests that restricting representations and intertwiners in the state sum for Spin(4) BF theory is not sufficient to get the correct vertex amplitude. Instead, for a general theory of Plebanski type, we propose a quantization procedure which is by construction equivalent to the canonical path integral quantization and, being applied to our model, reproduces the SU(2) Crane-Yetter state sum. A characteristic feature of this procedure is the use of secondary second class constraints on an equal footing with the primary simplicity constraints, which leads to a new formula for the vertex amplitude.Comment: 34 pages; changes in the abstract and introduction, a few references adde
    corecore