1,597 research outputs found

    Neutrino oscillations in curved spacetime: an heuristic treatment

    Get PDF
    We discuss neutrino oscillations in curved spacetime. Our heuristic approach can accomodate matter effects and gravitational contributions to neutrino spin precession in the presence of a magnetic field. By way of illustration, we perform explicit calculations in the Schwarzschild geometry. In this case, gravitational effects on neutrino oscillations are intimately related to the redshift. We discuss how spacetime curvature could affect the resonance position and adiabaticity of matter-enhanced neutrino flavor conversion.Comment: 7 pages, REVTeX and 1 included style file. Submitted to Phys. Rev.

    Electron capture on iron group nuclei

    Get PDF
    We present Gamow-Teller strength distributions from shell model Monte Carlo studies of fp-shell nuclei that may play an important role in the pre-collapse evolution of supernovae. We then use these strength distributions to calculate the electron-capture cross sections and rates in the zero-momentum transfer limit. We also discuss the thermal behavior of the cross sections. We find large differences in these cross sections and rates when compared to the naive single-particle estimates. These differences need to be taken into account for improved modeling of the early stages of type II supernova evolution

    Gamow-Teller strength distributions for nuclei in pre-supernova stellar cores

    Get PDF
    Electron-capture and β\beta-decay of nuclei in the core of massive stars play an important role in the stages leading to a type II supernova explosion. Nuclei in the f-p shell are particularly important for these reactions in the post Silicon-burning stage of a presupernova star. In this paper, we characterise the energy distribution of the Gamow-Teller Giant Resonance (GTGR) for mid-fp-shell nuclei in terms of a few shape parameters, using data obtained from high energy, forward scattering (p,n) and (n,p) reactions. The energy of the GTGR centroid EGTE_{GT} is further generalised as function of nuclear properties like mass number, isospin and other shell model properties of the nucleus. Since a large fraction of the GT strength lies in the GTGR region, and the GTGR is accessible for weak transitions taking place at energies relevant to the cores of presupernova and collapsing stars, our results are relevant to the study of important ee^--capture and β\beta-decay rates of arbitrary, neutron-rich, f-p shell nuclei in stellar cores. Using the observed GTGR and Isobaric Analog States (IAS) energy systematics we compare the coupling coefficients in the Bohr-Mottelson two particle interaction Hamiltonian for different regions of the Isotope Table.Comment: Revtex, 28 pages +7 figures (PostScript Figures, uuencoded, filename: Sutfigs.uu). If you have difficulty printing the figures, please contact [email protected]. Accepted for publication in Phys. Rev. C, Nov 01, 199

    Theology, News and Notes - Vol. 34, No. 03

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1095/thumbnail.jp

    Introduction: looking beyond the walls

    Get PDF
    In its consideration of the remarkable extent and variety of non-university researchers, this book takes a broader view of ‘knowledge’ and ‘research’ than in the many hot debates about today’s knowledge society, ‘learning age’, or organisation of research. It goes beyond the commonly held image of ‘knowledge’ as something produced and owned by the full-time experts to take a look at those engaged in active knowledge building outside the university walls

    Technique for Direct eV-Scale Measurements of the Mu and Tau Neutrino Masses Using Supernova Neutrinos

    Get PDF
    Early black hole formation in a core-collapse supernova will abruptly truncate the neutrino fluxes. The sharp cutoff can be used to make model-independent time-of-flight neutrino mass tests. Assuming a neutrino luminosity of 105210^{52} erg/s per flavor at cutoff and a distance of 10 kpc, SuperKamiokande can detect an electron neutrino mass as small as 1.8 eV, and the proposed OMNIS detector can detect mu and tau neutrino masses as small as 6 eV. This {\it Letter} presents the first technique with direct sensitivity to eV-scale mu and tau neutrino masses.Comment: 4 pages including 3 inline figures. Submitted to Physical Review Letter

    Population ecology of vervet monkeys in a high latitude, semi-arid riparian woodland

    Get PDF
    Sherpa Romeo green journal: open accessNarrow riparian woodlands along non-perennial streams have made it possible for vervet monkeys to penetrate the semi-arid karoo ecosystem of South Africa, whilst artificial water points have more recently allowed these populations to colonize much more marginal habitat away from natural water sources. In order to better understand the sequelae of life in these narrow, linear woodlands for historically ‘natural’ populations and to test the prediction that they are ecologically stressed, we determined the size of troops in relation to their reliance on natural and artificial water sources and collected detailed data from two river-centred troops on activity, diet and ranging behaviour over an annual cycle. In comparison to other populations, our data indicate that river-centred troops in the karoo were distinctive primarily both for their large group sizes and, consequently, their large adult cohorts, and in the extent of home range overlap in what is regarded as a territorial species. Whilst large group size carried the corollary of increased day journey length and longer estimated interbirth intervals, there was little other indication of the effects of ecological stress on factors such as body weight and foraging effort. We argue that this was a consequence of the high density of Acacia karroo, which accounted for a third of annual foraging effort in what was a relatively depauperate floristic habitat. We ascribed the large group size and home range overlap to constraints on group fission. Conservation implications: The distribution of group sizes, sampled appropriately across habitats within a conservation area, will be of more relevance to management than average values, which may be nothing more than a statistical artefact, especially when troop sizes are bimodally distributed.Ye

    Thermonuclear Kinetics in Astrophysics

    Full text link
    Over the billions of years since the Big Bang, the lives, deaths and afterlives of stars have enriched the Universe in the heavy elements that make up so much of ourselves and our world. This review summarizes the methods used to evolve these nuclear abundances within astrophysical simulations. These methods fall into 2 categories; evolution via rate equations and via equilibria. Because the rate equations in nucleosynthetic applications involve a wide range of timescales, implicit methods have proven mandatory, leading to the need to solve matrix equations. Efforts to improve the performance of such rate equation methods are focused on efficient solution of these matrix equations, in particular by making best use of the sparseness of these matrices, and finding methods that require less frequent matrix solutions. Recent work to produce hybrid schemes which use local equilibria to reduce the computational cost of the rate equations is also discussed. Such schemes offer significant improvements in the speed of reaction networks and are accurate under circumstances where calculations which assume complete equilibrium fail.Comment: 27 pages, 2 figures, a review for a special issue of Nuclear Physics
    corecore