3,021 research outputs found

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    Resonance structures in the multichannel quantum defect theory for the photofragmentation processes involving one closed and many open channels

    Get PDF
    The transformation introduced by Giusti-Suzor and Fano and extended by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to reformulate MQDT into the forms having one-to-one correspondence with those in Fano's configuration mixing (CM) theory of resonance for the photofragmentation processes involving one closed and many open channels. The reformulation thus allows MQDT to have the full power of the CM theory, still keeping its own strengths such as the fundamental description of resonance phenomena without an assumption of the presence of a discrete state as in CM.Comment: 7 page

    Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array

    Get PDF
    This work confirms that not only surface plasmons but many other kinds of electromagnetic eigenmodes should be considered in explaining the values of the transmittivity through a slab bearing a two-dimensional periodic corrugation. Specifically, the role of Brewster-Zennek modes appearing in metallic films exhibiting regions of weak positive dielectric constant. It is proposed that these modes play a significant role in the light transmission in a thin chromium film perforated with normal cylindrical holes, for appropriate lattice parameters.Comment: 5 pages, 4 figures. Published versio

    Tuning of coupling modes in laterally parallel double open quantum dots

    Full text link
    We consider electronic transport through laterally parallel double open quantum dots embedded in a quantum wire in a perpendicular magnetic field. The coupling modes of the dots are tunable by adjusting the strength of a central barrier and the applied magnetic field. Probability density and electron current density are calculated to demonstrate transport effects including magnetic blocking, magnetic turbulence, and a hole-like quasibound state feature. Fano to dip line-shape crossover in the conductance is found by varying the magnetic field.Comment: RevTeX, 13 pages with 18 included postscript figures, high resolution version is available at http://hartree.raunvis.hi.is/~vidar/Rann/CSTVG_DOQD_05.pd

    Succinct Dictionary Matching With No Slowdown

    Full text link
    The problem of dictionary matching is a classical problem in string matching: given a set S of d strings of total length n characters over an (not necessarily constant) alphabet of size sigma, build a data structure so that we can match in a any text T all occurrences of strings belonging to S. The classical solution for this problem is the Aho-Corasick automaton which finds all occ occurrences in a text T in time O(|T| + occ) using a data structure that occupies O(m log m) bits of space where m <= n + 1 is the number of states in the automaton. In this paper we show that the Aho-Corasick automaton can be represented in just m(log sigma + O(1)) + O(d log(n/d)) bits of space while still maintaining the ability to answer to queries in O(|T| + occ) time. To the best of our knowledge, the currently fastest succinct data structure for the dictionary matching problem uses space O(n log sigma) while answering queries in O(|T|log log n + occ) time. In this paper we also show how the space occupancy can be reduced to m(H0 + O(1)) + O(d log(n/d)) where H0 is the empirical entropy of the characters appearing in the trie representation of the set S, provided that sigma < m^epsilon for any constant 0 < epsilon < 1. The query time remains unchanged.Comment: Corrected typos and other minor error

    Transverse excitations of ultracold matter waves upon propagation past abrupt waveguide changes

    Get PDF
    The propagation of ultracold atomic gases through abruptly changing waveguide potentials is examined in the limit of non-interacting atoms. Time-independent scattering calculations of microstructured waveguides with discontinuous changes in the transverse harmonic binding potentials are used to mimic waveguide perturbations and imperfections. Three basic configurations are examined: step-like, barrier-like and well-like with waves incident in the ground mode. At low energies, the spectra rapidly depart from single-moded, with significant transmission and reflection of excited modes. The high-energy limit sees 100 percent transmission, with the distribution of the transmitted modes determined simply by the overlap of the mode wave functions and interference.Comment: 20 pages, 7 figures, under review PR

    Precise Variational Calculation For The Doubly Excited State (2p^2)^3P^e of Helium

    Full text link
    Highly precise variational calculations of non-relativistic energies of the (2p^2)^3P^e state of Helium atom are presented.We get an upper bound energy E=-0.71050015565678 a.u.,the lowest yet obtained.Comment: 5 pages, 1 tabl

    Numerical Studies of Fano Resonance in Quantum dots Embedded in AB Rings

    Full text link
    The Fano resonance in quantum dots embedded in Aharonov-Bohm rings is examined theoretically, using two models of non-interacting electrons. The first model yields an analytical expression for the conductance G. G is written in an extended Fano form with a complex parameter. The shape of the resonance can be asymmetric or symmetric, depending on the magnetic flux enclosed in the ring. The "phase" of the resonance is changed continuously with increasing the flux in two-terminal situations. These are in accordance with recent experimental results. In the second model, we consider the dephasing effect on the Fano resonance by numerical calculations.Comment: 2 pages, 4 figures, to appear in J. Phys. Soc. Jpn., proceedings of International Conference on Quantum Transport and Quantum Coherence (Localisation 2002, Tokyo

    Entanglement, Mixedness, and Spin-Flip Symmetry in Multiple-Qubit Systems

    Full text link
    A relationship between a recently introduced multipartite entanglement measure, state mixedness, and spin-flip symmetry is established for any finite number of qubits. It is also shown that, within those classes of states invariant under the spin-flip transformation, there is a complementarity relation between multipartite entanglement and mixedness. A number of example classes of multiple-qubit systems are studied in light of this relationship.Comment: To appear in Physical Review A; submitted 14 May 200
    • …
    corecore