3,647 research outputs found
On the Parikh-de-Bruijn grid
We introduce the Parikh-de-Bruijn grid, a graph whose vertices are
fixed-order Parikh vectors, and whose edges are given by a simple shift
operation. This graph gives structural insight into the nature of sets of
Parikh vectors as well as that of the Parikh set of a given string. We show its
utility by proving some results on Parikh-de-Bruijn strings, the abelian analog
of de-Bruijn sequences.Comment: 18 pages, 3 figures, 1 tabl
Inferring an Indeterminate String from a Prefix Graph
An \itbf{indeterminate string} (or, more simply, just a \itbf{string}) \s{x}
= \s{x}[1..n] on an alphabet is a sequence of nonempty subsets of
. We say that \s{x}[i_1] and \s{x}[i_2] \itbf{match} (written
\s{x}[i_1] \match \s{x}[i_2]) if and only if \s{x}[i_1] \cap \s{x}[i_2] \ne
\emptyset. A \itbf{feasible array} is an array \s{y} = \s{y}[1..n] of
integers such that \s{y}[1] = n and for every , \s{y}[i] \in
0..n\- i\+ 1. A \itbf{prefix table} of a string \s{x} is an array \s{\pi} =
\s{\pi}[1..n] of integers such that, for every , \s{\pi}[i] = j
if and only if \s{x}[i..i\+ j\- 1] is the longest substring at position
of \s{x} that matches a prefix of \s{x}. It is known from \cite{CRSW13} that
every feasible array is a prefix table of some indetermintate string. A
\itbf{prefix graph} \mathcal{P} = \mathcal{P}_{\s{y}} is a labelled simple
graph whose structure is determined by a feasible array \s{y}. In this paper we
show, given a feasible array \s{y}, how to use \mathcal{P}_{\s{y}} to
construct a lexicographically least indeterminate string on a minimum alphabet
whose prefix table \s{\pi} = \s{y}.Comment: 13 pages, 1 figur
Computing Covers Using Prefix Tables
An \emph{indeterminate string} on an alphabet is a
sequence of nonempty subsets of ; is said to be \emph{regular} if
every subset is of size one. A proper substring of regular is said to
be a \emph{cover} of iff for every , an occurrence of in
includes . The \emph{cover array} of is
an integer array such that is the longest cover of .
Fifteen years ago a complex, though nevertheless linear-time, algorithm was
proposed to compute the cover array of regular based on prior computation
of the border array of . In this paper we first describe a linear-time
algorithm to compute the cover array of regular string based on the prefix
table of . We then extend this result to indeterminate strings.Comment: 14 pages, 1 figur
String Comparison in -Order: New Lexicographic Properties & On-line Applications
-order is a global order on strings related to Unique Maximal
Factorization Families (UMFFs), which are themselves generalizations of Lyndon
words. -order has recently been proposed as an alternative to
lexicographical order in the computation of suffix arrays and in the
suffix-sorting induced by the Burrows-Wheeler transform. Efficient -ordering
of strings thus becomes a matter of considerable interest. In this paper we
present new and surprising results on -order in strings, then go on to
explore the algorithmic consequences
Lyndon Array Construction during Burrows-Wheeler Inversion
In this paper we present an algorithm to compute the Lyndon array of a string
of length as a byproduct of the inversion of the Burrows-Wheeler
transform of . Our algorithm runs in linear time using only a stack in
addition to the data structures used for Burrows-Wheeler inversion. We compare
our algorithm with two other linear-time algorithms for Lyndon array
construction and show that computing the Burrows-Wheeler transform and then
constructing the Lyndon array is competitive compared to the known approaches.
We also propose a new balanced parenthesis representation for the Lyndon array
that uses bits of space and supports constant time access. This
representation can be built in linear time using words of space, or in
time using asymptotically the same space as
String Covering: A Survey
The study of strings is an important combinatorial field that precedes the
digital computer. Strings can be very long, trillions of letters, so it is
important to find compact representations. Here we first survey various forms
of one potential compaction methodology, the cover of a given string x,
initially proposed in a simple form in 1990, but increasingly of interest as
more sophisticated variants have been discovered. We then consider covering by
a seed; that is, a cover of a superstring of x. We conclude with many proposals
for research directions that could make significant contributions to string
processing in future
Algorithms to Compute the Lyndon Array
We first describe three algorithms for computing the Lyndon array that have
been suggested in the literature, but for which no structured exposition has
been given. Two of these algorithms execute in quadratic time in the worst
case, the third achieves linear time, but at the expense of prior computation
of both the suffix array and the inverse suffix array of x. We then go on to
describe two variants of a new algorithm that avoids prior computation of
global data structures and executes in worst-case n log n time. Experimental
evidence suggests that all but one of these five algorithms require only linear
execution time in practice, with the two new algorithms faster by a small
factor. We conjecture that there exists a fast and worst-case linear-time
algorithm to compute the Lyndon array that is also elementary (making no use of
global data structures such as the suffix array)
Numerical shock propagation using geometrical shock dynamics
A simple numerical scheme for the calculation of the motion of shock waves in gases based on Whitham's theory of geometrical shock dynamics is developed. This scheme is used to study the propagation of shock waves along walls and in channels and the self-focusing of initially curved shockfronts. The numerical results are compared with exact and numerical solutions of the geometrical-shock-dynamics equations and with recent experimental investigations
- …