97,655 research outputs found
N K Pi molecular state with I=1 and J(Pi)=3/2-
The structure of the molecule-like state of with spin-parity
and isospin I=1 is studied within the chiral SU(3) quark
model. First we calculate the , , and phase shifts in the
framework of the resonating group method (RGM), and a qualitative agreement
with the experimental data is obtained. Then we perform a rough estimation for
the energy of , and the effect of the mixing to
the configuration is also considered. The
calculated energy is very close to the threshold of the system. A
detailed investigation is worth doing in the further study.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.
Sigma_c Dbar and Lambda_c Dbar states in a chiral quark model
The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin
S=1/2 are dynamically investigated within the framework of a chiral constituent
quark model by solving a resonating group method (RGM) equation. The results
show that the interaction between Sigma_c and Dbar is attractive, which
consequently results in a Sigma_c Dbar bound state with the binding energy of
about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive
interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar
and Lambda_c Dbar is found to be negligible due to the fact that the gap
between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and
the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.Comment: 7 pages,2 figures. arXiv admin note: text overlap with
arXiv:nucl-th/0606056 by other author
Resonating group method study of kaon-nucleon elastic scattering in the chiral SU(3) quark model
The chiral SU(3) quark model is extended to include an antiquark in order to
study the kaon-nucleon system. The model input parameters , ,
are taken to be the same as in our previous work which focused on the
nucleon-nucleon and nucleon-hyperon interactions. The mass of the scalar meson
is chosen to be 675 MeV and the mixing of and is
considered. Using this model the kaon-nucleon and partial waves phase
shifts of isospin I=0 and I=1 have been studied by solving a resonating group
method (RGM) equation. The numerical results of , , ,
, and partial waves are in good agreement with the
experimental data while the phase shifts of partial wave are a little
bit too repulsive when the laboratory momentum of the kaon meson is greater
than 500 MeV in this present calculation.Comment: 17 pages, 6 figures. Final version for publicatio
Baryon-meson interactions in chiral quark model
Using the resonating group method (RGM), we dynamically study the
baryon-meson interactions in chiral quark model. Some interesting results are
obtained: (1) The Sigma K state has an attractive interaction, which
consequently results in a Sigma K quasibound state. When the channel coupling
of Sigma K and Lambda K is considered, a sharp resonance appears between the
thresholds of these two channels. (2) The interaction of Delta K state with
isospin I=1 is attractive, which can make for a Delta K quasibound state. (3)
When the coupling to the Lambda K* channel is considered, the N phi is found to
be a quasibound state in the extended chiral SU(3) quark model with several MeV
binding energy. (4) The calculated S-, P-, D-, and F-wave KN phase shifts
achieve a considerable improvement in not only the signs but also the
magnitudes in comparison with other's previous quark model study.Comment: 5 pages, 2 figures. Talk given at 3rd Asia Pacific Conference on
Few-Body Problems in Physics (APFB05), Korat, Nakhon Ratchasima, Thailand,
26-30 Jul 200
S, P, D, F wave KN phase shifts in the chiral SU(3) quark model
The , , , wave phase shifts have been studied in the chiral
SU(3) quark model by solving a resonating group method equation. The numerical
results of different partial waves are in agreement with the experimental data
except for the cases of and , which are less well described
when the laboratory momentum of the kaon meson is greater than 400 MeV.Comment: Prepared for 10th International Symposium on Meson-Nucleon Physics
and the Structure of the Nucleon (MENU 2004), Beijing, China, 29 Aug - 4 Sep
200
Low-lying ud anti-s anti-s configurations in a non-relativistic constituent quark model
The energies of the low-lying isoscalar and isovector ud anti-s anti-s
configurations with spin-parity J^P=0^+, 1^+, and 2^+ are calculated in a
non-relativistic constituent quark model by use of the variational method. The
contributions of various parts of the quark-quark interacting potentials
including the s-channel interaction are investigated, and the effect of
different forms of confinement potential is examined. The model parameters are
determined by the same method as in our previous work, and they still can
satisfactorily describe the nucleon-nucleon scattering phase shifts and the
hyperon-nucleon cross sections. The parameters of the s-channel interaction are
fixed by the masses of K and K^* mesons, for which the size parameter is taken
to be two possible values. When it is chosen as the same as baryons', the
numerical results show that the masses of all the ud anti-s anti-s
configurations are higher than the corresponding meson-meson thresholds. But
when the size parameter for the K and K^* mesons is adjusted to be smaller than
that for the baryons, the ud anti-s anti-s configuration with I=0 and J^P=1^+
is found to lie lower than the K^*K^* threshold, furthermore, this state has a
very small KK^* component and the interaction matrix elements between this
state and KK^* is comparatively small, thus its coupling to the KK^* channel
will consequently be weak and it might be regarded as a possible tetraquark
candidate.Comment: 17 pages, 1 figur
Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages
In this paper, the scheme of quantum computing based on Stark chirped rapid
adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100,
113601 (2008)] is extensively applied to implement the quantum-state
manipulations in the flux-biased Josephson phase qubits. The broken-parity
symmetries of bound states in flux-biased Josephson junctions are utilized to
conveniently generate the desirable Stark-shifts. Then, assisted by various
transition pulses universal quantum logic gates as well as arbitrary
quantum-state preparations could be implemented. Compared with the usual
PI-pulses operations widely used in the experiments, the adiabatic population
passage proposed here is insensitive the details of the applied pulses and thus
the desirable population transfers could be satisfyingly implemented. The
experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure
- …