85 research outputs found
Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)
The phase immiscibility and the excellent matching between Ag(001) and
Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field
of low dimensionality magnetic systems. Intermixing could be drastically
limited at deposition temperatures as low as 140-150 K. The film structural
evolution induced by post-growth annealing presents many interesting aspects
involving activated atomic exchange processes and affecting magnetic
properties. Previous experiments, of He and low energy ion scattering on films
deposited at 150 K, indicated the formation of a segregated Ag layer upon
annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag
matrix. In those experiments, information on sub-surface layers was attained by
techniques mainly sensitive to the topmost layer. Here, systematic PED
measurements, providing chemical selectivity and structural information for a
depth of several layers, have been accompanied with a few XRD rod scans,
yielding a better sensitivity to the buried interface and to the film long
range order. The results of this paper allow a comparison with recent models
enlightening the dissolution paths of an ultra thin metal film into a different
metal, when both subsurface migration of the deposit and phase separation
between substrate and deposit are favoured. The occurrence of a surfactant-like
stage, in which a single layer of Ag covers the Fe film is demonstrated for
films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the
formation of two Ag capping layers is also reported. As the annealing
temperature was increased beyond 700 K, the surface layers closely resembled
the structure of bare Ag(001) with the residual presence of subsurface Fe
aggregates.Comment: 4 pages, 3 figure
Spin Reorientations Induced by Morphology Changes in Fe/Ag(001)
By means of magneto-optical Kerr effect we observe spin reorientations from
in-plane to out-of-plane and vice versa upon annealing thin Fe films on Ag(001)
at increasing temperatures. Scanning tunneling microscopy images of the
different Fe films are used to quantify the surface roughness. The observed
spin reorientations can be explained with the experimentally acquired roughness
parameters by taking into account the effect of roughness on both the magnetic
dipolar and the magnetocrystalline anisotropy.Comment: 4 pages with 3 EPS figure
Scaling of Island Growth in Pb Overlayers on Cu(001)
The growth and ordering of a Pb layer deposited on Cu(001) at 150 K has been
studied using atom beam scattering. At low coverage, ordered Pb islands with a
large square unit cell and nearly hexagonal internal structure are formed. This
is a high order commensurate phase with 30 atoms in the unit cell. From the
measurement of the island diffraction peak profiles we find a power law for the
mean island - size versus coverage with an exponent . A
scaling behavior of growth is confirmed and a simple model describing island
growth is presented. Due to the high degeneracy of the monolayer phase,
different islands do not diffract coherently. Therefore, when islands merge
they still diffract as separate islands and coalescence effects are thus
negligible. From the result for we conclude that the island density is
approximately a constant in the coverage range where the
ordered islands are observed. We thus conclude that most islands nucleate at
and then grow in an approximately self similar fashion as
increases.Comment: 23 pages, 10 Figures (available upon request). SU-PHYS-93-443-375
Spin injection and spin accumulation in all-metal mesoscopic spin valves
We study the electrical injection and detection of spin accumulation in
lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin
valve devices with transparent interfaces. Different ferromagnetic metals,
permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin
injectors and detectors. For the nonmagnetic metal both aluminium (Al) and
copper (Cu) are used. Our multi-terminal geometry allows us to experimentally
separate the spin valve effect from other magneto resistance signals such as
the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR
contribution of the ferromagnetic contacts can dominate the amplitude of the
spin valve effect, making it impossible to observe the spin valve effect in a
'conventional' measurement geometry. In a 'non local' spin valve measurement we
are able to completely isolate the spin valve signal and observe clear spin
accumulation signals at T=4.2 K as well as at room temperature (RT). For
aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm
at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350
nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory
and results obtained from giant magneto resistance (GMR), conduction electron
spin resonance (CESR), anti-weak localization and superconducting tunneling
experiments. The spin valve signals generated by the Py electrodes (alpha_F
lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes
(alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F
lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are
compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
- âŚ