14,305 research outputs found

    Parasitoids of the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia, 1977-78

    Get PDF
    In 1977, the western spruce budworm, <i>Choristoneura occidentalis</i> Free., caused serious defoliation of Douglas-fir (<i>Pseudotsuga menziesii</i> [Mirb.] Franco) over 246,000 hectares, the largest area ever infested by the budworm in British Columbia. The budworm was surveyed in 1977 and 1978, as the population declined; 25 parasitoid species were found. Early-stage larval parasitism averaged 40%, late-stage 20%, and pupal 16% (1977) and 25% (1978). Total parasitism was 61% (1977) and 69% (1978); in 1977, 17% of the egg masses were attacked. Disease incidence was very low. The sudden decline of the budworm in 1978 over the entire infestation, regardless of parasitoid populations, suggested that parasitism was not a major factor. The widespread occurrence of parasitoids throughout the infestation suggests that they would not have been seriously affected overall by pesticide applications on limited areas

    Low Mass Dark Matter and Invisible Higgs Width In Darkon Models

    Full text link
    The Standard Model (SM) plus a real gauge-singlet scalar field dubbed darkon (SM+D) is the simplest model possessing a weakly interacting massive particle (WIMP) dark-matter candidate. In this model, the parameters are constrained from dark matter relic density and direct searches. The fact that interaction between darkon and SM particles is only mediated by Higgs boson exchange may lead to significant modifications to the Higgs boson properties. If the dark matter mass is smaller than a half of the Higgs boson mass, the Higgs boson can decay into a pair of darkons resulting in a large invisible branching ratio. The Higgs boson will be searched for at the LHC and may well be discovered in the near future. If a Higgs boson with a small invisible decay width will be found, the SM+D model with small dark matter mass will be in trouble. We find that by extending the SM+D to a two-Higgs-doublet model plus a darkon (THDM+D) it is possible to have a Higgs boson with a small invisible branching ratio and at the same time the dark matter can have a low mass. We also comment on other implications of this model.Comment: RevTeX, 15 pages, 11 figures. A few typos corrected and some references adde

    Resummation Effects in Vector-Boson and Higgs Associated Production

    Get PDF
    Fixed-order QCD radiative corrections to the vector-boson and Higgs associated production channels, pp -> VH (V=W, Z), at hadron colliders are well understood. We combine higher order perturbative QCD calculations with soft-gluon resummation of both threshold logarithms and logarithms which are important at low transverse momentum of the VH pair. We study the effects of both types of logarithms on the scale dependence of the total cross section and on various kinematic distributions. The next-to-next-to-next-to-leading logarithmic (NNNLL) resummed total cross sections at the LHC are almost identical to the fixed-order perturbative next-to-next-to-leading order (NNLO) rates, indicating the excellent convergence of the perturbative QCD series. Resummation of the VH transverse momentum (p_T) spectrum provides reliable results for small values of p_T and suggests that implementing a jet-veto will significantly decrease the cross sections.Comment: 25 pages, references update

    Abell 1033: birth of a radio phoenix

    Full text link
    Extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033, a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two sub-clusters displaced along the N-S direction. The two sub-clusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an AGN is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.Comment: accepted MNRA

    Discovery of the supernova remnant G351.0-5.4

    Full text link
    Context. While searching the NRAO VLA Sky Survey (NVSS) for diffuse radio emission, we have serendipitously discovered extended radio emission close to the Galactic plane. The radio morphology suggests the presence of a previously unknown Galactic supernova remnant. An unclassified {\gamma}-ray source detected by EGRET (3EG J1744-3934) is present in the same location and may stem from the interaction between high-speed particles escaping the remnant and the surrounding interstellar medium. Aims. Our aim is to confirm the presence of a previously unknown supernova remnant and to determine a possible association with the {\gamma}-ray emission 3EG J1744-3934. Methods. We have conducted optical and radio follow-ups of the target using the Dark Energy Camera (DECam) on the Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO) and the Giant Meterwave Radio Telescope (GMRT). We then combined these data with archival radio and {\gamma}-ray observations. Results. While we detected the extended emission in four different radio bands (325, 1400, 2417, and 4850 MHz), no optical counterpart has been identified. Given its morphology and brightness, it is likely that the radio emission is caused by an old supernova remnant no longer visible in the optical band. Although an unclassified EGRET source is co-located with the supernova remnant, Fermi-LAT data do not show a significant {\gamma}-ray excess that is correlated with the radio emission. However, in the radial distribution of the {\gamma}-ray events, a spatially extended feature is related with SNR at a confidence level 1.5\sim 1.5 {\sigma}. Conclusions. We classify the newly discovered extended emission in the radio band as the old remnant of a previously unknown Galactic supernova: SNR G351.0-5.4.Comment: 6 pages, 6 figures, accepted A&

    Numerical study of the glass-glass transition in short-ranged attractive colloids

    Full text link
    We report extensive numerical simulations in the {\it glass} region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behavior of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition.Comment: 15 pages, 9 figures; Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted to J. Phys.: Condens. Matt.

    Confirmation of Anomalous Dynamical Arrest in attractive colloids: a molecular dynamics study

    Full text link
    Previous theoretical, along with early simulation and experimental, studies have indicated that particles with a short-ranged attraction exhibit a range of new dynamical arrest phenomena. These include very pronounced reentrance in the dynamical arrest curve, a logarithmic singularity in the density correlation functions, and the existence of `attractive' and `repulsive' glasses. Here we carry out extensive molecular dynamics calculations on dense systems interacting via a square-well potential. This is one of the simplest systems with the required properties, and may be regarded as canonical for interpreting the phase diagram, and now also the dynamical arrest. We confirm the theoretical predictions for re-entrance, logarithmic singularity, and give the first direct evidence of the coexistence, independent of theory, of the two coexisting glasses. We now regard the previous predictions of these phenomena as having been established.Comment: 15 pages,15 figures; submitted to Phys. Rev.

    On Lattice Computations of K+ --> pi+ pi0 Decay at m_K =2m_pi

    Get PDF
    We use one-loop chiral perturbation theory to compare potential lattice computations of the K+ --> pi+ pi0 decay amplitude at m_K=2m_pi with the experimental value. We find that the combined one-loop effect due to this unphysical pion to kaon mass ratio and typical finite volume effects is still of order minus 20-30%, and appears to dominate the effects from quenching.Comment: 4 pages, revte

    Star polymers: A study of the structural arrest in presence of attractive interactions

    Full text link
    Simulations and Mode-Coupling Theory calculations, for a large range of the arm number ff and packing fraction η\eta have shown that the structural arrest and the dynamics of star polymers in a good solvent are extremely rich: the systems show a reentrant melting of the disordered glass nested between two stable fluid phases that strongly resemble the equilibrium phase diagram. Starting from a simple model potential we investigate the effect of the interplay between attractive interactions of different range and ultrasoft core repulsion, on the dynamics and on the occurrence of the ideal glass transition line. In the two cases considered so far, we observed some significant differences with respect to the purely repulsive pair interaction. We also discuss the interplay between equilibrium and non equilibrium phase behavior. The accuracy of the theoretical tools we utilized in our investigation has been checked by comparing the results with molecular dynamics simulations.Comment: 24 pages, 14 figures, accepted for publication in Physical Review
    corecore