4,461 research outputs found

    The economics of irrigating wheat in a humid climate - A study in the East of England

    Get PDF
    In the UK, wheat is the most important cultivated cereal, grown extensively as a rainfed crop. Irrigation of wheat has previously been considered uneconomic, but increases in world wheat prices and recent droughts have led to some farmers revising their views. Widespread adoption of wheat irrigation would have major implications for wheat production, the irrigation industry and water resources in regions that are already water scarce. This study investigated the financial viability of irrigating winter wheat grown on a sandy loam soil in the East of England. Long-term climate data (1961–2011) for Silsoe (Bedfordshire) was used to drive a biophysical crop model to assess irrigation water requirements and yield response. Modelling assumed a typical irrigation schedule to maximise yield and quality, and average reported wheat prices for 2007 to 2012. Irrigation costs were calculated assuming an overhead mobile hosereel–raingun system applying river water, abstracted either in summer and used directly, or abstracted in winter and stored in an on-farm reservoir. The results suggest that the yield benefit would justify supplemental irrigation by farmers who have unused irrigation equipment and unused summer water, although irrigation of higher-value field vegetable crops later in the season would normally take precedence – the Added Value of Water (AVW) usefully applied to milling winter wheat under these conditions ranged between 0.24 and 0.32 £ m−3. Investment in new irrigation schemes could also be marginally viable if unused summer river water was available for direct abstraction (AVW = 0.08 £ m−3). Investments in new farm reservoirs for irrigating wheat are currently not profitable (AVW = –0.23 £ m−3). Sensitivity analysis suggests that in the longer term, the expected increase in world wheat prices and the impacts of climate change are likely to make the financial benefits stronger, particularly in the drier catchments further east and on low moisture retentive soils, but competing demands for water would still make extensive wheat irrigation unlikely

    Climate change impacts on water for irrigated horticulture in the Vale of Evesham. Final Report

    Get PDF
    This project has undertaken a scoping review and assessment of the impacts of climate change on irrigated horticulture in the Vale of Evesham, an area of intense irrigated production located within the Environment Agency’s Warwickshire Avon CAMS Catchment. The research was based on a combination of methodologies including desk-based review of published and grey literature, computer agroclimatic and water balance modelling, GIS mapping, meetings with key informants and a stakeholder workshop. Future climate datasets were derived from the latest UK Climate Impacts Programme (UKICIP02) climatology, using selected emission scenarios for the 2020s, 2050s and 2080s. These scenarios were then used to model and map the future agroclimatic conditions under which agriculture might operate and the consequent impacts on irrigation need (depths of water applied) and volumetric demand. This was complimented by a postal survey to abstractors and a stakeholder workshop, to identify, review and assess farmer adaptation options and responses. The key findings arising from the research, implications for water resource management and recommendations for further work are summarised below. Using a geographical information system (GIS), a series of agroclimate maps have been produced, for the baseline and selected UKCIP02 scenario. The maps show major changes in agroclimate within the catchment over the next 50 years. The driest agroclimate zones are currently located around Worcester, Evesham, Tewkesbury and Gloucester, corresponding to areas where horticultural production and irrigation demand are most concentrated. By the 2020s, all agroclimate zones are predicted to increase in aridity. By the 2050s the entire catchment is predicted to have a drier agroclimate than is currently experienced anywhere in the driest parts of the catchment. This will have major impacts on the pattern of land use and irrigation water demand. Cont/d

    Difficulties in using spectral properties to map irrigated areas in a temperate climate: A case study of potatoes in England

    Get PDF
    Irrigation in England is supplemental to rainfall and only used on a small proportion of the cultivated land, notably on high value vegetable and potato crops. However, it is a significant water user as most of the irrigated area is located in the driest part of England. The existing data on irrigated areas are based on government and industry surveys. Recently these datasets have been used with Geographic Information Systems (GIS) to produce irrigated maps, but these can only be published at catchment level due to confidentiality constraints on the datasets. To assess the possibility of using remote sensing data for mapping the irrigated area, one Landsat image for the summer 2003 was used to compare the spectral signature between irrigated and non-irrigated potato fields in the East of England. ISODATA algorithm was used to perform unsupervised classification, and 50 spectral classes were created. A ground truth dataset was then used to identify the most representative spectral class for irrigated and nonirrigated fields. The result showed that categories both fall into the same spectral class, suggesting there are no significant differences between their spectral properties. Therefore, using satellite imagery may not yet be an appropriate method or need more research for mapping irrigated area in temperate climates such as England. The summer rainfall reduces the water stress differences between irrigated and non-irrigated potato fields such that these satellite sensors cannot yet differentiate the crops

    A limit on the detectability of the energy scale of inflation

    Get PDF
    We show that the polarization of the cosmic microwave background can be used to detect gravity waves from inflation if the energy scale of inflation is above 3.2 times 10^15 GeV. These gravity waves generate polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do not. The limiting ``noise'' arises from the second--order generation of curl from density perturbations, or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a function of detector sensitivity and observing time.Comment: 4 pages, 3 figures, submitted to PR

    CMB Lensing Reconstruction on the Full Sky

    Get PDF
    Gravitational lensing of the microwave background by the intervening dark matter mainly arises from large-angle fluctuations in the projected gravitational potential and hence offers a unique opportunity to study the physics of the dark sector at large scales. Studies with surveys that cover greater than a percent of the sky will require techniques that incorporate the curvature of the sky. We lay the groundwork for these studies by deriving the full sky minimum variance quadratic estimators of the lensing potential from the CMB temperature and polarization fields. We also present a general technique for constructing these estimators, with harmonic space convolutions replaced by real space products, that is appropriate for both the full sky limit and the flat sky approximation. This also extends previous treatments to include estimators involving the temperature-polarization cross-correlation and should be useful for next generation experiments in which most of the additional information from polarization comes from this channel due to sensitivity limitations.Comment: Accepted for publication in Phys. Rev. D; typos correcte

    Theory of excitons in cubic III-V semiconductor GaAs, InAs and GaN quantum dots: fine structure and spin relaxation

    Full text link
    Exciton fine structures in cubic III-V semiconductor GaAs, InAs and GaN quantum dots are investigated systematically and the exciton spin relaxation in GaN quantum dots is calculated by first setting up the effective exciton Hamiltonian. The electron-hole exchange interaction Hamiltonian, which consists of the long- and short-range parts, is derived within the effective-mass approximation by taking into account the conduction, heavy- and light-hole bands, and especially the split-off band. The scheme applied in this work allows the description of excitons in both the strong and weak confinement regimes. The importance of treating the direct electron-hole Coulomb interaction unperturbatively is demonstrated. We show in our calculation that the light-hole and split-off bands are negligible when considering the exciton fine structure, even for GaN quantum dots, and the short-range exchange interaction is irrelevant when considering the optically active doublet splitting. We point out that the long-range exchange interaction, which is neglected in many previous works, contributes to the energy splitting between the bright and dark states, together with the short-range exchange interaction. Strong dependence of the optically active doublet splitting on the anisotropy of dot shape is reported. Large doublet splittings up to 600 μ\mueV, and even up to several meV for small dot size with large anisotropy, is shown in GaN quantum dots. The spin relaxation between the lowest two optically active exciton states in GaN quantum dots is calculated, showing a strong dependence on the dot anisotropy. Long exciton spin relaxation time is reported in GaN quantum dots. These findings are in good agreement with the experimental results.Comment: 22+ pages, 16 figures, several typos in the published paper are corrected in re

    Bostonia. Volume 12

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    • …
    corecore