474 research outputs found

    The fabrication of reproducible superconducting scanning tunneling microscope tips

    Full text link
    Superconducting scanning tunneling microscope tips have been fabricated with a high degree of reproducibility. The fabrication process relies on sequential deposition of superconducting Pb and a proximity-coupled Ag capping layer onto a Pt/Ir tip. The tips were characterized by tunneling into both normal-metal and superconducting films. The simplicity of the fabrication process, along with the stability and reproducibility of the tips, clear the way for tunneling studies with a well-characterized, scannable superconducting electrode.Comment: 4 pages, 3 figures, REVTeX. Submitted to Rev. Sci. Instru

    A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years

    Get PDF
    Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.Peer reviewedPublisher PD

    Gigahertz quantum key distribution with InGaAs avalanche photodiodes

    Full text link
    We report a demonstration of quantum key distribution (QKD) at GHz clock rates with InGaAs avalanche photodiodes (APDs) operating in a self-differencing mode. Such a mode of operation allows detection of extremely weak avalanches so that the detector afterpulse noise is sufficiently suppressed. The system is characterized by a secure bit rate of 2.37 Mbps at 5.6 km and 27.9 kbps at 65.5 km when the fiber dispersion is not compensated. After compensating the fiber dispersion, the QKD distance is extended to 101 km, resulting in a secure key rate of 2.88 kbps. Our results suggest that InGaAs APDs are very well suited to GHz QKD applications.Comment: 4 pages, 4 figure

    Coexistence of high-bit-rate quantum key distribution and data on optical fiber

    Full text link
    Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.Comment: 7 pages, 5 figure
    • ā€¦
    corecore