1,417 research outputs found
A DESIGN STUDY OF RADIAL INFLOW TURBINES WITH SPLITTER BLADES IN THREE-DIMENSIONAL FLOW
Abstract An inverse design technique to design turoomachinery blading with splitter blades in three-dimensional flow is developed. It is based on the use of Cr:coach transformation which allows the velocity field to be written as a potential part and a rotational part. It is shown that the rotational part can be expressed in terms of the mean swirl schedule (the circumferential average of the product of radius and tangential velocity) and the blade geometry that includes the main blade as well as the splitter blade. This results in an inverse design approach in which both the main and the splitter blade geometry are determined from a specification of the swirl schedule. Previous design study of a heavily-loaded radial inflow turbine, without splitter blades, for a rather wide variety of specified mean swirl schedules result in a blade shape with unacceptable non-radial blade filament; the resulting reduced static pressure distribution yields an "inviscid reverse flow region"' covering almost the first half of the blade pressure surface. When the inverse design technique is applied to the design study of the turbine wheel with splitter blades, the results indicate that the use of splitter blades is an effective means for making the blade filament at an axial location more radial as well as a potential means for eliminating any "inviscid reverse flow' region that may exist on the pressure side of the blades
Recommended from our members
A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI
Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum
Recommended from our members
Performance of a New Composite Single-Crystal Filtered Thermal Neutron Beam for Neutron Capture Therapy Research at the University of Missouri
The University of Missouri (MU) Institute for Nano and Molecular Medicine, the Idaho National Laboratory (INL) and the University of Missouri Research Reactor (MURR) have undertaken a new collaborative research initiative to further the development of improved boron delivery agents for BNCT. The first step of this effort has involved the design and construction of a new thermal neutron beam irradiation facility for cell and small-animal radiobological research at the MURR. In this paper we present the beamline design with the results of pertinent neutronic design calculations. Results of neutronic performance measurements, initiated in February 2008, will also be available for inclusion in the final paper. The new beam will be located in an existing 152.4 mm (6’) diameter MURR beam tube extending from the core to the right in Figure 1. The neutron beam that emanates from the berylium reflector around the reactor is filtered with single-crystal silicon and single-crystal bismuth segments to remove high energy, fission spectrum neutrons and reactor gamma ray contamination. The irradiation chamber is downstream of the bismuth filter section, and approximately 3.95 m from the central axis of the reactor. There is sufficient neutron flux available from the MURR at its rated power of 10 MW to avoid the need for cryogenic cooling of the crystals. The MURR operates on average 150 hours per week, 52 weeks a year. In order to take advantage of 7800 hours of operation time per year the small animal BNCT facility will incorparate a shutter constucuted of boral, lead, steel and polyethylene that will allow experimenters to access the irradiation chamber a few minutes after irradiation. Independent deterministic and stochastic models of the coupled reactor core and beamline were developed using the DORT two-dimensional radiation transport code and the MCNP-5 Monte Carlo code, respectively. The BUGLE-80 47-neutron, 20-gamma group cross section library was employed for the DORT computations, in keeping with previous practice for analysis of a number of other NCT neutron facilities worldwide. The standard ENDF/B Version 6.8 cross section libraries were used with MCNP, except that special calculated cross section sets for the single-crystal bismuth and silicon filters in the MCNP calculations were provided to MU and INL specifically for this study by the Korean Atomic Energy Research Institute and, independently, by North Carolina State University. Cross sections for the amorphous bismuth and silicon files on the BUGLE-80 library used with DORT were modified to account for the single-crystal form of these materials using correction factors computed using MCNP. A number of parameter studies were conducted, independently varying the thicknesses of the silicon and bismuth filter sections to find an optimum that maximizes the thermal neutron flux while maintaining the fast-neutron and gamma components of the beam within acceptable ranges. Both the DORT and MCNP beamline optimization computations led to the conclusion that the silicon filtering section should be approximately 55 cm in thickness and the bismuth section should be 8 cm in thickness. The total estimated thermal neutron flux delivered to the irradiation location by the filtered beam, integrated to 0.414 eV, is approximately 9.0 x 108 neutrons/cm2-s. The calculations also yielded an epithermal and fast-neutron kerma of approximately 1.0 x 10-11 cGy-cm2
Transonic small-disturbance theory for lightly loaded cascades
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76863/1/AIAA-7841-736.pd
Tuberculosis incidence correlates with sunshine : an ecological 28-year time series study
Birmingham is the largest UK city after London, and central Birmingham has an annual tuberculosis incidence of 80 per 100,000. We examined seasonality and sunlight as drivers of tuberculosis incidence. Hours of sunshine are seasonal, sunshine exposure is necessary for the production of vitamin D by the body and vitamin D plays a role in the host response to tuberculosis.
Methods:
We performed an ecological study that examined tuberculosis incidence in Birmingham from Dec 1981 to Nov 2009, using publicly-available data from statutory tuberculosis notifications, and related this to the seasons and hours of sunshine (UK Meteorological Office data) using unmeasured component models.
Results:
There were 9,739 tuberculosis cases over the study period. There was strong evidence for seasonality, with notifications being 24.1% higher in summer than winter (p<0.001). Winter dips in sunshine correlated with peaks in tuberculosis incidence six months later (4.7% increase in incidence for each 100 hours decrease in sunshine, p<0.001).
Discussion and Conclusion:
A potential mechanism for these associations includes decreased vitamin D levels with consequent impaired host defence arising from reduced sunshine exposure in winter. This is the longest time series of any published study and our use of statutory notifications means this data is essentially complete. We cannot, however, exclude the possibility that another factor closely correlated with the seasons, other than sunshine, is responsible. Furthermore, exposure to sunlight depends not only on total hours of sunshine but also on multiple individual factors. Our results should therefore be considered hypothesis-generating. Confirmation of a potential causal relationship between winter vitamin D deficiency and summer peaks in tuberculosis incidence would require a randomized-controlled trial of the effect of vitamin D supplementation on future tuberculosis incidence
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
A Systematic Investigation of Gas-Based Improved Oil Recovery Technologies for the Bakken Tight Oil Formation
In this work, we systematically studied the feasibility of various EOR options for the Bakken Formation based on detailed reservoir/rock characterization, fluid analysis, and gas extraction investigation.https://commons.und.edu/eerc-publications/1006/thumbnail.jp
Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism
This essay examines the philosophical significance of -logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of -logical validity can then be countenanced within a coalgebraic logic, and -logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of -logical validity correspond to those of second-order logical consequence, -logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
- …