161 research outputs found

    X4 Human Immunodeficiency Virus Type 1 gp120 Promotes Human Hepatic Stellate Cell Activation and Collagen I Expression through Interactions with CXCR4

    Get PDF
    <div><h3>Background & Aims</h3><p>Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the <em>in vitro</em> impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the <em>in vivo</em> expression of gp120 in HIV/HCV coinfected livers.</p> <h3>Methods</h3><p>Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/− either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.</p> <h3>Results</h3><p>X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.</p> <h3>Conclusions</h3><p>X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.</p> </div

    Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model

    Get PDF
    Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood. © 2013 Kline et al

    Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle

    Get PDF
    Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle

    Circulating sCD14 Is Associated with Virological Response to Pegylated-Interferon-Alpha/Ribavirin Treatment in HIV/HCV Co-Infected Patients

    Get PDF
    Microbial translocation (MT) through the gut accounts for immune activation and CD4+ loss in HIV and may influence HCV disease progression in HIV/HCV co-infection. We asked whether increased MT and immune activation may hamper anti-HCV response in HIV/HCV patients.98 HIV/HCV patients who received pegylated-alpha-interferon (peg-INF-alpha)/ribavirin were retrospectively analyzed. Baseline MT (lipopolysaccharide, LPS), host response to MT (sCD14), CD38+HLA-DR+CD4+/CD8+, HCV genotype, severity of liver disease were assessed according to Early Virological Response (EVR: HCV-RNA <50 IU/mL at week 12 of therapy or ≥2 log(10) reduction from baseline after 12 weeks of therapy) and Sustained Virological Response (SVR: HCV-RNA <50 IU/mL 24 weeks after end of therapy). Mann-Whitney/Chi-square test and Pearson's correlation were used. Multivariable regression was performed to determine factors associated with EVR/SVR.71 patients displayed EVR; 41 SVR. Patients with HCV genotypes 1-4 and cirrhosis presented a trend to higher sCD14, compared to patients with genotypes 2-3 (p = 0.053) and no cirrhosis (p = 0.052). EVR and SVR patients showed lower levels of circulating sCD14 (p = 0.0001, p = 0.026, respectively), but similar T-cell activation compared to Non-EVR (Null Responders, NR) and Non-SVR (N-SVR) subjects. sCD14 resulted the main predictive factor of EVR (0.145 for each sCD14 unit more, 95%CI 0.031-0.688, p = 0.015). SVR was associated only with HCV genotypes 2-3 (AOR 0.022 for genotypes 1-4 vs 2-3, 95%CI 0.001-0.469, p = 0.014).In HIV/HCV patients sCD14 correlates with the severity of liver disease and predicts early response to peg-INF-alpha/ribavirin, suggesting MT-driven immune activation as pathway of HIV/HCV co-infection and response to therapy
    corecore