4,831 research outputs found

    Interface creation and stress dynamics in plasma-deposited silicon dioxide films

    Get PDF
    The stress in amorphous silicon dioxide filmgrown by plasma-assisted deposition was investigated both during and after film growth for continuously and intermittently depositedfilms. It is shown that an intermittent deposition leads to the creation of interfacial regions during film growth, but also causes dynamical structural change in already-deposited film which results in a significantly different stress-thickness profile measured after deposition.Film growth in the continuously depositedfilm was also monitored using an in situ laser reflection technique, and a strong change in stress was detected at about 145nm which was attributed to the onset of island coalescence

    Generation of the global workspace roadmap of the 3-RPR using rotary disk search

    Full text link
    Path planning for parallel manipulators in the configuration space can be a challenging task due to the existence of multiple direct kinematic solutions. Hence the aim of this paper is to define a generalised hierarchical path planning scheme for trajectory generation between two configurations in the configuration space for manipulators that exhibit more than one solution in their direct kinematics. This process is applied to the 3-RPR mechanism, constrained to a 2-DOF system by setting active joint parameter ρ1 to a constant. The overall reachable workspace is discretised and deconstructed into smaller patches, which are then stitched together creating a global workspace roadmap. Using the roadmap, path feasibility is obtained and local path planning is used to generate a complete trajectory. This method can determine a singularity-free path between any two connectible points in the configuration space, including assembly mode changes. © 2014 Elsevier Ltd

    Path planning and assembly mode-changes of 6-DOF Stewart-Gough-type parallel manipulators

    Full text link
    © 2016 International Federation for the Promotion of Mechanism and Machine Science The Stewart-Gough platform (SGP) is a six degree-of-freedom (DOF) parallel manipulator whose reachable workspace is complex due to its closed-loop configuration and six DOF outputs. As such, methods of path planning that involve storing the entire reachable workspace in memory at high resolutions are not feasible due to this six-dimensional workspace. In addition, complete path planning algorithms struggle in higher dimensional applications without significant customisations. As a result, many workspace analysis algorithms and path planning schemes use iterative techniques, particularly when tracking the manipulator's many direct kinematic solutions. The aim of this paper is to present the viability of singularity-free path planning in the Stewart-Gough platform's 6-dimensional workspace on modern-day computing systems by demonstrating its assembly mode-changing capability. The entire workspace volume is found using flood-fill algorithms with smooth and singularity-free trajectories generated within this known workspace. Workspace volume analysis was also performed with results comparable to other works

    Generalized Supersymmetric Perturbation Theory

    Full text link
    Using the basic ingredient of supersymmetry, we develop a simple alternative approach to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wave functions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.Comment: 13 pages article in LaTEX (uses standard article.sty). No Figures. Sent to Ann. Physics (2004

    Determination of Dynamic Shear Modulus of Soils from Static Strength

    Get PDF
    A correlation study between the dynamic shear modulus obtained from the resonant column technique and the static strength obtained from the undrained triaxial compression test is described. The materials studied were a uniform sand, a non-active fine silty clay and a highly-active bentonite clay treated with additives to increase the range for static and dynamic shear strength of the soils. It is noted that a linear relationship exists between the dynamic shear modulus, except for those soil specimens having very low strength, independent of test parameters. Using linear regression analysis, empirical equations for predicting the maximum dynamic shear modulus from the static strength have been obtained for the three different soils

    SHOP2: An HTN Planning System

    Full text link
    The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains

    Adaptive homodyne measurement of optical phase

    Get PDF
    We present an experimental demonstration of the power of real-time feedback in quantum metrology, confirming a theoretical prediction by Wiseman regarding the superior performance of an adaptive homodyne technique for single-shot measurement of optical phase. For phase measurements performed on weak coherent states with no prior knowledge of the signal phase, we show that the variance of adaptive homodyne estimation approaches closer to the fundamental quantum uncertainty limit than any previously demonstrated technique. Our results underscore the importance of real-time feedback for reaching quantum performance limits in coherent telecommunication, precision measurement and information processing.Comment: RevTex4, color PDF figures (separate files), submitted to PR

    Logarithmic perturbation theory for quasinormal modes

    Get PDF
    Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Poschl-Teller potential is briefly discussed. A numerical method is developed that handles the exponentially large wavefunctions which appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st

    Responses of Astrocytes in Culture After Low Dose Laser Irradiation

    Get PDF
    The effect of Helium-Neon low dose laser on astrocytes was investigated in cultures of isolated astrocytes from albino neonatal rats. The laser appeared to inhibit the growth of astrocytes as exemplified by the smaller sizes of the cells and the decreased leucine uptake in each cell after treatment. Temporary decrease in the number of mitoses was also observed, but this trend was reversed soon after. Electron microscopic studies revealed an increase in buddings from cell bodies and processes (branches) after irradiation
    • 

    corecore