961 research outputs found
Room temperature electrical detection of spin coherence in C60
Journal ArticleAn experimental demonstration of electrical detection of coherent spin motion of weakly coupled, localized electron spins in thin fullerene C60 films at room temperature is presented. Pulsed electrically detected magnetic resonance experiments on vertical photocurrents through Al/C60/ZnO samples showed that an electron spin Rabi oscillation is reflected by transient current changes. The nature of possible microscopic mechanisms responsible for this spin to charge conversion as well as its implications for the readout of endohedral fullerene (N@C60) spin qubits are discussed
Using coherent dynamics to quantify spin-coupling within triplet-exciton/polaron complexes in organic diodes
Quantifying the spin-spin interactions which influence electronic transitions
in organic semiconductors is crucial for understanding their
magneto-optoelectronic properties. By combining a theoretical model for three
spin interactions in the coherent regime with pulsed electrically detected
magnetic resonance experiments on MEH-PPV diodes, we quantify the spin-coupling
within complexes comprising three spin-half particles. We determine that these
particles form triplet-exciton:polaron pairs, where the polaron:exciton
exchange is over 5 orders of magnitude weaker (less than 170 MHz) than that
within the exciton. This approach providing a direct spectroscopic approach for
distinguishing between coupling regimens, such as strongly bound trions, which
have been proposed to occur in organic devices.Comment: 5 pages, 4 figure
Room Temperature Electrical Detection of Spin Coherence in C60
An experimental demonstration of electrical detection of coherent spin motion
of weakly coupled, localized electron spins in thin Fullerene C60 films at room
temperature is presented. Pulsed electrically detected magnetic resonance
experiments on vertical photocurrents through Al/C60/ZnO samples showed that an
electron spin Rabi oscillation is reflected by transient current changes. The
nature of possible microscopic mechanisms responsible for this spin to charge
conversion as well as its implications for the readout of endohedral Fullerene
(N@C60) spin qubits are discussed.Comment: 4 pages, 3 figure
Long-lived spin coherence in silicon with an electrical spin trap readout
Journal ArticlePulsed electrically detected magnetic resonance of phosphorous (31P) in bulk crystalline silicon at very high magnetic fields (B0 > 8:5 T) and low temperatures (T = 2:8 K) is presented. We find that the spin-dependent capture and reemission of highly polarized (>95%) conduction electrons by equally highly polarized 31P donor electrons introduces less decoherence than other mechanisms for spin-to-charge conversion. This allows the electrical detection of spin coherence times in excess of 100 μs, 50 times longer than the previous maximum for electrically detected spin readout experiments
Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=1/2
We report on an analytical description of spin-dependent electronic
transition rates which are controlled by a radiation induced spin-Rabi
oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic
states (S=1/2). The oscillation components (the Fourier content) of the net
transition rates within spin-pair ensembles are derived for randomly
distributed spin resonances with account of a possible correlation between the
two distributions that correspond to the two individual pair partners. The
results presented here show that when electrically or optically detected Rabi
spectroscopy is conducted under an increasing driving field B_ 1, the Rabi
spectrum evolves from a single resonance peak at s=\Omega_R, where
\Omega_R=\gamma B_1 is the Rabi frequency (\gamma is the gyromagnetic ratio),
to three peaks at s= \Omega_R, s=2\Omega_R, and at low s<< \Omega_R. The
crossover between the two regimes takes place when \Omega_R exceeds the
expectation value \delta_0 of the difference of the Zeeman energies within the
pairs, which corresponds to the broadening of the magnetic resonance lines in
the presence of disorder caused by hyperfine field or distributions of Lande
g-factors. We capture this crossover by analytically calculating the shapes of
all three peaks at arbitrary relation between \Omega_R and \delta_0. When the
peaks are well-developed their widths are \Delta s ~ \delta_0^2/\Omega_R.Comment: 10 page, 5 figure
Power systems research at MSFC
Power systems research reviews at Marshall Space Flight Cente
Slow Hopping and Spin Dephasing of Coulombically Bound Polaron Pairs in an Organic Semiconductor at Room Temperature
Polaron pairs are intermediate electronic states that are integral to the optoelectronic conversion process in organic semiconductors. Here, we report on electrically detected spin echoes arising from direct quantum control of polaron pair spins in an organic light-emitting diode at room temperature. This approach reveals phase coherence on a microsecond time scale, and offers a direct way to probe charge recombination and dissociation processes in organic devices, revealing temperature-independent intermolecular carrier hopping on slow time scales. In addition, the long spin phase coherence time at room temperature is of potential interest for developing quantum-enhanced sensors and information processing systems which operate at room temperature
Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters
Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re
- and -spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects
A study of donor electron spins and spin--dependent electronic transitions
involving phosphorous (P) atoms in proximity of the (111) oriented
crystalline silicon (c-Si) to silicon dioxide (SiO) interface is
presented for [P] = 10 and [P] =
10 at about liquid He temperatures (
). Using pulsed electrically detected magnetic
resonance (pEDMR), spin--dependent transitions between the \Phos donor state
and two distinguishable interface states are observed, namely (i) \Pb centers
which can be identified by their characteristic anisotropy and (ii) a more
isotropic center which is attributed to E defects of the \sio bulk
close to the interface. Correlation measurements of the dynamics of
spin--dependent recombination confirm that previously proposed transitions
between \Phos and the interface defects take place. The influence of these
electronic near--interface transitions on the \Phos donor spin coherence time
as well as the donor spin--lattice relaxation time is then
investigated by comparison of spin Hahn--echo decay measurements obtained from
conventional bulk sensitive pulsed electron paramagnetic resonance and surface
sensitive pEDMR, as well as surface sensitive electrically detected inversion
recovery experiments. The measurements reveal that both and of
\Phos donor electrons spins in proximity of energetically lower interface
states at K are reduced by several orders of magnitude
- …