261 research outputs found

    Detecting Hidden Differences via Permutation Symmetries

    Full text link
    We present a method for describing and characterizing the state of N particles that may be distinguishable in principle but not in practice due to experimental limitations. The technique relies upon a careful treatment of the exchange symmetry of the state among experimentally accessible and experimentally inaccessible degrees of freedom. The approach we present allows a new formalisation of the notion of indistinguishability and can be implemented easily using currently available experimental techniques. Our work is of direct relevance to current experiments in quantum optics, for which we provide a specific implementation.Comment: 8 pages, 1 figur

    Control of Raman Lasing in the Nonimpulsive Regime

    Full text link
    We explore coherent control of stimulated Raman scattering in the nonimpulsive regime. Optical pulse shaping of the coherent pump field leads to control over the stimulated Raman output. A model of the control mechanism is investigated.Comment: 4 pages, 5 figure

    Work in Progress: The WSU Model for Engineering Mathematics Education

    Get PDF
    This paper summarizes progress to date on the WSU model for engineering mathematics education, an NSF funded curriculum reform initiative at Wright State University. The WSU model seeks to increase student retention, motivation and success in engineering through application-driven, just-in-time engineering math instruction. The WSU approach involves the development of a novel freshman-level engineering mathematics course EGR 101, as well as a large-scale restructuring of the engineering curriculum. By removing traditional math prerequisites and moving core engineering courses earlier in the program, the WSU model shifts the traditional emphasis on math prerequisite requirements to an emphasis on engineering motivation for math, with a just-in-time structuring of the new math sequence. This paper summarizes the development to date of the WSU model for engineering mathematics education, including a preliminary assessment of student performance and perception during the initial implementation of EGR 101. In addition, an assessment of first-year retention results is anticipated in time for the conference

    Continuous-variable optical quantum state tomography

    Full text link
    This review covers latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special accent on its practical aspects and applications in quantum information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics are discussed, such as state-reconstruction algorithms (with emphasis on the maximum-likelihood technique), the technology of time-domain homodyne detection, mode matching issues, and engineering of complex quantum states of light. The paper also surveys quantum-state tomography for the transverse spatial state (spatial mode) of the field in the special case of fields containing precisely one photon.Comment: Finally, a revision! Comments to lvov(at)ucalgary.ca and raymer(at)uoregon.edu are welcom

    Structure of nonlinear gauge transformations

    Full text link
    Nonlinear Doebner-Goldin [Phys. Rev. A 54, 3764 (1996)] gauge transformations (NGT) defined in terms of a wave function ψ(x)\psi(x) do not form a group. To get a group property one has to consider transformations that act differently on different branches of the complex argument function and the knowledge of the value of ψ(x)\psi(x) is not sufficient for a well defined NGT. NGT that are well defined in terms of ψ(x)\psi(x) form a semigroup parametrized by a real number γ\gamma and a nonzero λ\lambda which is either an integer or 1λ1-1\leq \lambda\leq 1. An extension of NGT to projectors and general density matrices leads to NGT with complex γ\gamma. Both linearity of evolution and Hermiticity of density matrices are gauge dependent properties.Comment: Final version, to be published in Phys.Rev.A (Rapid Communication), April 199

    Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process

    Get PDF
    The accuracy of the Arthurs-Kelly model of a simultaneous measurement of position and momentum is analysed using concepts developed by Braginsky and Khalili in the context of measurements of a single quantum observable. A distinction is made between the errors of retrodiction and prediction. It is shown that the distribution of measured values coincides with the initial state Husimi function when the retrodictive accuracy is maximised, and that it is related to the final state anti-Husimi function (the P representation of quantum optics) when the predictive accuracy is maximised. The disturbance of the system by the measurement is also discussed. A class of minimally disturbing measurements is characterised. It is shown that the distribution of measured values then coincides with one of the smoothed Wigner functions described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final published versio

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include

    Genetic Algorithms as a Feature Selection Tool in Heart Failure Disease

    Get PDF
    A great wealth of information is hidden in clinical datasets, which could be analyzed to support decision-making processes or to better diagnose patients. Feature selection is one of the data pre-processing that selects a set of input features by removing unneeded or irrelevant features. Various algorithms have been used in healthcare to solve such problems involving complex medical data. This paper demonstrates how Genetic Algorithms offer a natural way to solve feature selection amongst data sets, where the fittest individual choice of variables is preserved over different generations. In this paper, a Genetic Algorithm is introduced as a feature selection method and shown to be effective in aiding understanding of such data

    Direct measurement of optical quasidistribution functions: multimode theory and homodyne tests of Bell's inequalities

    Full text link
    We develop a multimode theory of direct homodyne measurements of quantum optical quasidistribution functions. We demonstrate that unbalanced homodyning with appropriately shaped auxiliary coherent fields allows one to sample point-by-point different phase space representations of the electromagnetic field. Our analysis includes practical factors that are likely to affect the outcome of a realistic experiment, such as non-unit detection efficiency, imperfect mode matching, and dark counts. We apply the developed theory to discuss feasibility of observing a loophole-free violation of Bell's inequalities by measuring joint two-mode quasidistribution functions under locality conditions by photon counting. We determine the range of parameters of the experimental setup that enable violation of Bell's inequalities for two states exhibiting entanglement in the Fock basis: a one-photon Fock state divided by a 50:50 beam splitter, and a two-mode squeezed vacuum state produced in the process of non-degenerate parametric down-conversion.Comment: 18 pages, 7 figure

    Self-Spin-Controlled Rotation of Spatial States of a Dirac Electron in a Cylindrical Potential via Spin-Orbit Interaction

    Full text link
    Solution of the Dirac equation predicts that when an electron with non-zero orbital angular momentum propagates in a cylindrically symmetric potential, its spin and orbital degrees of freedom interact, causing the electron's phase velocity to depend on whether its spin and orbital angular momenta vectors are oriented parallel or anti-parallel with respect to each other. This spin-orbit splitting of the electronic dispersion curves can result in a rotation of the electron's spatial state in a manner controlled by the electron's own spin z-component value. These effects persist at non-relativistic velocities. To clarify the physical origin of this effect, we compare solutions of the Dirac equation to perturbative predictions of the Schrodinger-Pauli equation with a spin-orbit term, using the standard Foldy-Wouthuysen Hamiltonian. This clearly shows that the origin of the effect is the familiar relativistic spin-orbit interaction.Comment: 14 pages, 5 figures, 2 appendices, final versio
    corecore