570 research outputs found
Radioactive Probes of the Supernova-Contaminated Solar Nebula: Evidence that the Sun was Born in a Cluster
We construct a simple model for radioisotopic enrichment of the protosolar
nebula by injection from a nearby supernova, based on the inverse square law
for ejecta dispersion. We find that the presolar radioisotopes abundances
(i.e., in solar masses) demand a nearby supernova: its distance can be no
larger than 66 times the size of the protosolar nebula, at a 90% confidence
level, assuming 1 solar mass of protosolar material. The relevant size of the
nebula depends on its state of evolution at the time of radioactivity
injection. In one scenario, a collection of low-mass stars, including our sun,
formed in a group or cluster with an intermediate- to high-mass star that ended
its life as a supernova while our sun was still a protostar, a starless core,
or perhaps a diffuse cloud. Using recent observations of protostars to estimate
the size of the protosolar nebula constrains the distance of the supernova at
0.02 to 1.6 pc. The supernova distance limit is consistent with the scales of
low-mass stars formation around one or more massive stars, but it is closer
than expected were the sun formed in an isolated, solitary state. Consequently,
if any presolar radioactivities originated via supernova injection, we must
conclude that our sun was a member of such a group or cluster that has since
dispersed, and thus that solar system formation should be understood in this
context. In addition, we show that the timescale from explosion to the creation
of small bodies was on the order of 1.8 Myr (formal 90% confidence range of 0
to 2.2 Myr), and thus the temporal choreography from supernova ejecta to
meteorites is important. Finally, we can not distinguish between progenitor
masses from 15 to 25 solar masses in the nucleosynthesis models; however, the
20 solar mass model is somewhat preferred.Comment: ApJ accepted, 19 pages, 3 figure
Tumour-associated macrophages and oncolytic virotherapies:a mathematical investigation into a complex dynamics
Anti-cancer therapies based on oncolytic viruses are emerging as important approaches in cancer treatment. However, the effectiveness of these therapies depends significantly on the interactions between the oncolytic viruses and the host immune response. Macrophages are one of the most important cell types in the anti-viral immune responses, by acting as a first line of defence against infections. Here, we consider a mathematical approach to investigate the possible outcomes of the interactions between two extreme phenotypes of macrophages (M1 and M2 cells) and an oncolytic virus (VSV), in the context of B16F10 melanoma. We show that polarization towards either an M1 or M2 phenotype can enhance oncolytic virus therapy through either (i) anti-tumour immune activation, or (ii) enhanced oncolysis. Moreover, we show that tumour reduction and elimination does not depend only on the ratio of M1:M2 cells, but also on the number of tumour-infiltrating macrophages
Dense Molecular Gas In A Young Cluster Around MWC 1080 -- Rule Of The Massive Star
We present CS , CO , and CO , observations with the 10-element Berkeley Illinois Maryland Association
(BIMA) Array toward the young cluster around the Be star MWC 1080. These
observations reveal a biconical outflow cavity with size 0.3 and 0.05 pc
for the semimajor and semiminor axis and 45\arcdeg position angle.
These transitions trace the dense gas, which is likely the swept-up gas of the
outflow cavity, rather than the remaining natal gas or the outflow gas. The gas
is clumpy; thirty-two clumps are identified. The identified clumps are
approximately gravitationally bound and consistent with a standard isothermal
sphere density, which suggests that they are likely collapsing protostellar
cores. The gas kinematics suggests that there exists velocity gradients
implying effects from the inclination of the cavity and MWC 1080. The
kinematics of dense gas has also been affected by either outflows or stellar
winds from MWC 1080, and lower-mass clumps are possibly under stronger effects
from MWC 1080 than higher-mass clumps. In addition, low-mass cluster members
tend to be formed in the denser and more turbulent cores, compared to isolated
low-mass star-forming cores. This results from contributions of nearby forming
massive stars, such as outflows or stellar winds. Therefore, we conclude that
in clusters like the MWC 1080 system, effects from massive stars dominate the
star-forming environment in both the kinematics and dynamics of the natal cloud
and the formation of low-mass cluster members. This study provides insights
into the effects of MWC 1080 on its natal cloud, and suggests a different
low-mass star forming environment in clusters compared to isolated star
formation.Comment: 42 pages, 5 tables, and 13 figures, accepted for publication in Ap
Testing Magnetic Field Models for the Class 0 Protostar L1527
For the Class 0 protostar, L1527, we compare 131 polarization vectors from
SCUPOL/JCMT, SHARP/CSO and TADPOL/CARMA observations with the corresponding
model polarization vectors of four ideal-MHD, non-turbulent, cloud core
collapse models. These four models differ by their initial magnetic fields
before collapse; two initially have aligned fields (strong and weak) and two
initially have orthogonal fields (strong and weak) with respect to the rotation
axis of the L1527 core. Only the initial weak orthogonal field model produces
the observed circumstellar disk within L1527. This is a characteristic of
nearly all ideal-MHD, non-turbulent, core collapse models. In this paper we
test whether this weak orthogonal model also has the best agreement between its
magnetic field structure and that inferred from the polarimetry observations of
L1527. We found that this is not the case; based on the polarimetry
observations the most favored model of the four is the weak aligned model.
However, this model does not produce a circumstellar disk, so our result
implies that a non-turbulent, ideal-MHD global collapse model probably does not
represent the core collapse that has occurred in L1527. Our study also
illustrates the importance of using polarization vectors covering a large area
of a cloud core to determine the initial magnetic field orientation before
collapse; the inner core magnetic field structure can be highly altered by a
collapse and so measurements from this region alone can give unreliable
estimates of the initial field configuration before collapse.Comment: 43 pages, 9 figures, 4 tables. Accepted by the Astrophysical Journa
TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE
Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For TArea, the enhanced attenuation development process proved to be a powerful tool in developing a strategy that provides a high degree of performance while minimizing adverse collateral impacts of the remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs. As depicted in Figure 1, Edible oil deployment results in the development of structured geochemical zones and serves to decrease chlorinated compound concentrations in two ways: (1) physical sequestration, which reduces effective aqueous concentration and mobility; and (2) stimulation of anaerobic, abiotic and cometabolic degradation processes. In the central deployment area, contaminant initially partitions into the added oil phase. Biodegradation of the added organic substrate depletes the aquifer of oxygen and other terminal electron acceptors and creates conditions conducive to anaerobic degradation processes. The organic substrate is fermented to produce hydrogen, which is used as an electron donor for anaerobic dechlorination by organisms such as Dehalococcoides. Daughter products leaving the central treatment zone are amenable to aerobic oxidation. Further, the organic compounds leaving the central deployment zone (e.g., methane and propane) stimulate and enhance down gradient aerobic cometabolism which degrades both daughter compounds and several parent cVOCs. Figure 1 depicts TCE concentration reduction processes (labeled in green) along with their corresponding breakdown products in a structured geochemical zone scenario. A consortium of bacteria with the same net effect of Dehalococcoides may be present in the structured geochemical zones leading to the degradation of TCE and daughter products. Figure 2 shows a schematic of the documented cVOC degradation processes in both the anaerobic and aerobic structured geochemical zones. Specific aerobic and anaerobic bacteria and their degradation pathways are also listed in the diagram and have either been confirmed in the field or the laboratory. See references in the bibliography in Section 11
- …