2,933 research outputs found
Quantum limit of the triplet proximity effect in half-metal - superconductor junctions
We apply the scattering matrix approach to the triplet proximity effect in
superconductor-half metal structures. We find that for junctions that do not
mix different orbital modes, the zero bias Andreev conductance vanishes, while
the zero bias Josephson current is nonzero. We illustrate this finding on a
ballistic half-metal--superconductor (HS) and superconductor -- half-metal --
superconductor (SHS) junction with translation invariance along the interfaces,
and on HS and SHS systems where transport through the half-metallic region
takes place through a single conducting channel. Our calculations for these
physically single mode setups -- single mode point contacts and chaotic quantum
dots with single mode contacts -- illustrate the main strength of the
scattering matrix approach: it allows for studying systems in the quantum
mechanical limit, which is inaccessible for quasiclassical Green's function
methods, the main theoretical tool in previous works on the triplet proximity
effect.Comment: 12 pages, 10 figures; v2: references added, typos correcte
Pumped current and voltage for an adiabatic quantum pump
We consider adiabatic pumping of electrons through a quantum dot. There are
two ways to operate the pump: to create a dc current or to create a
dc voltage . We demonstrate that, for very slow pumping,
and are not simply related via the dc conductance as . For the case of a chaotic quantum dot, we consider the statistical
distribution of . Results are presented for the limiting
cases of a dot with single channel and with multichannel point contacts.Comment: 6 pages, 4 figure
High-frequency dynamics of wave localisation
We study the effect of localisation on the propagation of a pulse through a
multi-mode disordered waveguide. The correlator of the
transmitted wave amplitude u at two frequencies differing by delta_omega has
for large delta_omega the stretched exponential tail ~exp(-sqrt{tau_D
delta_omega/2}). The time constant tau_D=L^2/D is given by the diffusion
coefficient D, even if the length L of the waveguide is much greater than the
localisation length xi. Localisation has the effect of multiplying the
correlator by a frequency-independent factor exp(-L/2xi), which disappears upon
breaking time-reversal symmetry.Comment: 3 pages, 1 figur
Impurity-assisted Andreev reflection at a spin-active half-metal-superconductor interface
The Andreev reflection amplitude at a clean interface between a half-metallic
ferromagnet (H) and a superconductor (S) for which the half metal's
magnetization has a gradient perpendicular to the interface is proportional to
the excitation energy and vanishes at [B\'{e}ri
{\em et al.}, Phys.\ Rev.\ B {\bf 79}, 024517 (2009)]. Here we show that the
presence of impurities at or in the immediate vicinity of the HS interface
leads to a finite Andreev reflection amplitude at . This
impurity-assisted Andreev reflection dominates the low-bias conductance of a HS
junction and the Josephson current of an SHS junction in the long-junction
limit.Comment: 12 pages, 2 figure
Intensity distribution of scalar waves propagating in random media
Transmission of the scalar field through the random medium, represented by
the system of randomly distributed dielectric cylinders is calculated
numerically. System is mapped to the problem of electronic transport in
disordered two-dimensional systems. Universality of the statistical
distribution of transmission parameters is analyzed in the metallic and in the
localized regimes.In the metallic regime the universality of the transmission
statistics in all transparent channels is observed. In the band gaps, we
distinguish the disorder induced (Anderson) localization from the tunneling
through the system due to the gap in the density of states. We show also that
absorption causes rapid decrease of the mean conductance, but, contrary to the
localized regime, the conductance is self-averaged with a
Gaussian distribution
Spin and Charge Structure of the Surface States in Topological Insulators
We investigate the spin and charge densities of surface states of the
three-dimensional topological insulator , starting from the continuum
description of the material [Zhang {\em et al.}, Nat. Phys. 5, 438 (2009)]. The
spin structure on surfaces other than the 111 surface has additional complexity
because of a misalignment of the contributions coming from the two sublattices
of the crystal. For these surfaces we expect new features to be seen in the
spin-resolved ARPES experiments, caused by a non-helical spin-polarization of
electrons at the individual sublattices as well as by the interference of the
electron waves emitted coherently from two sublattices. We also show that the
position of the Dirac crossing in spectrum of surface states depends on the
orientation of the interface. This leads to contact potentials and surface
charge redistribution at edges between different facets of the crystal.Comment: Use the correct spin operator. Changes affect the surface states spin
structure, but not the spectru
Distributions of the Conductance and its Parametric Derivatives in Quantum Dots
Full distributions of conductance through quantum dots with single-mode leads
are reported for both broken and unbroken time-reversal symmetry. Distributions
are nongaussian and agree well with random matrix theory calculations that
account for a finite dephasing time, , once broadening due to finite
temperature is also included. Full distributions of the derivatives of
conductance with respect to gate voltage are also investigated.Comment: 4 pages (REVTeX), 4 eps figure
Quantum limit of the triplet proximity effect in half-metal - superconductor junctions
We apply the scattering matrix approach to the triplet proximity effect in
superconductor-half metal structures. We find that for junctions that do not
mix different orbital modes, the zero bias Andreev conductance vanishes, while
the zero bias Josephson current is nonzero. We illustrate this finding on a
ballistic half-metal--superconductor (HS) and superconductor -- half-metal --
superconductor (SHS) junction with translation invariance along the interfaces,
and on HS and SHS systems where transport through the half-metallic region
takes place through a single conducting channel. Our calculations for these
physically single mode setups -- single mode point contacts and chaotic quantum
dots with single mode contacts -- illustrate the main strength of the
scattering matrix approach: it allows for studying systems in the quantum
mechanical limit, which is inaccessible for quasiclassical Green's function
methods, the main theoretical tool in previous works on the triplet proximity
effect.Comment: 12 pages, 10 figures; v2: references added, typos correcte
- …