2,933 research outputs found

    Quantum limit of the triplet proximity effect in half-metal - superconductor junctions

    Full text link
    We apply the scattering matrix approach to the triplet proximity effect in superconductor-half metal structures. We find that for junctions that do not mix different orbital modes, the zero bias Andreev conductance vanishes, while the zero bias Josephson current is nonzero. We illustrate this finding on a ballistic half-metal--superconductor (HS) and superconductor -- half-metal -- superconductor (SHS) junction with translation invariance along the interfaces, and on HS and SHS systems where transport through the half-metallic region takes place through a single conducting channel. Our calculations for these physically single mode setups -- single mode point contacts and chaotic quantum dots with single mode contacts -- illustrate the main strength of the scattering matrix approach: it allows for studying systems in the quantum mechanical limit, which is inaccessible for quasiclassical Green's function methods, the main theoretical tool in previous works on the triplet proximity effect.Comment: 12 pages, 10 figures; v2: references added, typos correcte

    Pumped current and voltage for an adiabatic quantum pump

    Full text link
    We consider adiabatic pumping of electrons through a quantum dot. There are two ways to operate the pump: to create a dc current Iˉ{\bar I} or to create a dc voltage Vˉ{\bar V}. We demonstrate that, for very slow pumping, Iˉ{\bar I} and Vˉ{\bar V} are not simply related via the dc conductance GG as Iˉ=VˉG\bar I = \bar V G. For the case of a chaotic quantum dot, we consider the statistical distribution of VˉGIˉ{\bar V} G - {\bar I}. Results are presented for the limiting cases of a dot with single channel and with multichannel point contacts.Comment: 6 pages, 4 figure

    High-frequency dynamics of wave localisation

    Full text link
    We study the effect of localisation on the propagation of a pulse through a multi-mode disordered waveguide. The correlator of the transmitted wave amplitude u at two frequencies differing by delta_omega has for large delta_omega the stretched exponential tail ~exp(-sqrt{tau_D delta_omega/2}). The time constant tau_D=L^2/D is given by the diffusion coefficient D, even if the length L of the waveguide is much greater than the localisation length xi. Localisation has the effect of multiplying the correlator by a frequency-independent factor exp(-L/2xi), which disappears upon breaking time-reversal symmetry.Comment: 3 pages, 1 figur

    Impurity-assisted Andreev reflection at a spin-active half-metal-superconductor interface

    Get PDF
    The Andreev reflection amplitude at a clean interface between a half-metallic ferromagnet (H) and a superconductor (S) for which the half metal's magnetization has a gradient perpendicular to the interface is proportional to the excitation energy ε\varepsilon and vanishes at ε=0\varepsilon=0 [B\'{e}ri {\em et al.}, Phys.\ Rev.\ B {\bf 79}, 024517 (2009)]. Here we show that the presence of impurities at or in the immediate vicinity of the HS interface leads to a finite Andreev reflection amplitude at ε=0\varepsilon=0. This impurity-assisted Andreev reflection dominates the low-bias conductance of a HS junction and the Josephson current of an SHS junction in the long-junction limit.Comment: 12 pages, 2 figure

    Intensity distribution of scalar waves propagating in random media

    Full text link
    Transmission of the scalar field through the random medium, represented by the system of randomly distributed dielectric cylinders is calculated numerically. System is mapped to the problem of electronic transport in disordered two-dimensional systems. Universality of the statistical distribution of transmission parameters is analyzed in the metallic and in the localized regimes.In the metallic regime the universality of the transmission statistics in all transparent channels is observed. In the band gaps, we distinguish the disorder induced (Anderson) localization from the tunneling through the system due to the gap in the density of states. We show also that absorption causes rapid decrease of the mean conductance, but, contrary to the localized regime, the conductance is self-averaged with a Gaussian distribution

    Spin and Charge Structure of the Surface States in Topological Insulators

    Get PDF
    We investigate the spin and charge densities of surface states of the three-dimensional topological insulator Bi2Se3Bi_2Se_3, starting from the continuum description of the material [Zhang {\em et al.}, Nat. Phys. 5, 438 (2009)]. The spin structure on surfaces other than the 111 surface has additional complexity because of a misalignment of the contributions coming from the two sublattices of the crystal. For these surfaces we expect new features to be seen in the spin-resolved ARPES experiments, caused by a non-helical spin-polarization of electrons at the individual sublattices as well as by the interference of the electron waves emitted coherently from two sublattices. We also show that the position of the Dirac crossing in spectrum of surface states depends on the orientation of the interface. This leads to contact potentials and surface charge redistribution at edges between different facets of the crystal.Comment: Use the correct spin operator. Changes affect the surface states spin structure, but not the spectru

    Distributions of the Conductance and its Parametric Derivatives in Quantum Dots

    Full text link
    Full distributions of conductance through quantum dots with single-mode leads are reported for both broken and unbroken time-reversal symmetry. Distributions are nongaussian and agree well with random matrix theory calculations that account for a finite dephasing time, τϕ\tau_\phi, once broadening due to finite temperature TT is also included. Full distributions of the derivatives of conductance with respect to gate voltage P(dg/dVg)P(dg/dV_g) are also investigated.Comment: 4 pages (REVTeX), 4 eps figure

    Quantum limit of the triplet proximity effect in half-metal - superconductor junctions

    Full text link
    We apply the scattering matrix approach to the triplet proximity effect in superconductor-half metal structures. We find that for junctions that do not mix different orbital modes, the zero bias Andreev conductance vanishes, while the zero bias Josephson current is nonzero. We illustrate this finding on a ballistic half-metal--superconductor (HS) and superconductor -- half-metal -- superconductor (SHS) junction with translation invariance along the interfaces, and on HS and SHS systems where transport through the half-metallic region takes place through a single conducting channel. Our calculations for these physically single mode setups -- single mode point contacts and chaotic quantum dots with single mode contacts -- illustrate the main strength of the scattering matrix approach: it allows for studying systems in the quantum mechanical limit, which is inaccessible for quasiclassical Green's function methods, the main theoretical tool in previous works on the triplet proximity effect.Comment: 12 pages, 10 figures; v2: references added, typos correcte
    corecore