8,088 research outputs found

    New critical frontiers for the Potts and percolation models

    Full text link
    We obtain the critical threshold for a host of Potts and percolation models on lattices having a structure which permits a duality consideration. The consideration generalizes the recently obtained thresholds of Scullard and Ziff for bond and site percolation on the martini and related lattices to the Potts model and to other lattices.Comment: 9 pages, 5 figure

    On kernel engineering via Paley–Wiener

    Get PDF
    A radial basis function approximation takes the form s(x)=∑k=1nakϕ(x−bk),x∈Rd,s(x)=\sum_{k=1}^na_k\phi(x-b_k),\quad x\in {\mathbb{R}}^d, where the coefficients a 1,
,a n are real numbers, the centres b 1,
,b n are distinct points in ℝ d , and the function φ:ℝ d →ℝ is radially symmetric. Such functions are highly useful in practice and enjoy many beautiful theoretical properties. In particular, much work has been devoted to the polyharmonic radial basis functions, for which φ is the fundamental solution of some iterate of the Laplacian. In this note, we consider the construction of a rotation-invariant signed (Borel) measure ÎŒ for which the convolution ψ=ÎŒ φ is a function of compact support, and when φ is polyharmonic. The novelty of this construction is its use of the Paley–Wiener theorem to identify compact support via analysis of the Fourier transform of the new kernel ψ, so providing a new form of kernel engineering

    Two-dimensional O(n) model in a staggered field

    Full text link
    Nienhuis' truncated O(n) model gives rise to a model of self-avoiding loops on the hexagonal lattice, each loop having a fugacity of n. We study such loops subjected to a particular kind of staggered field w, which for n -> infinity has the geometrical effect of breaking the three-phase coexistence, linked to the three-colourability of the lattice faces. We show that at T = 0, for w > 1 the model flows to the ferromagnetic Potts model with q=n^2 states, with an associated fragmentation of the target space of the Coulomb gas. For T>0, there is a competition between T and w which gives rise to multicritical versions of the dense and dilute loop universality classes. Via an exact mapping, and numerical results, we establish that the latter two critical branches coincide with those found earlier in the O(n) model on the triangular lattice. Using transfer matrix studies, we have found the renormalisation group flows in the full phase diagram in the (T,w) plane, with fixed n. Superposing three copies of such hexagonal-lattice loop models with staggered fields produces a variety of one or three-species fully-packed loop models on the triangular lattice with certain geometrical constraints, possessing integer central charges 0 <= c <= 6. In particular we show that Benjamini and Schramm's RGB loops have fractal dimension D_f = 3/2.Comment: 40 pages, 17 figure

    Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions

    Full text link
    We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colorability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colorless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicolored random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolorable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps

    The triangular Ising model with nearest- and next-nearest-neighbor couplings in a field

    Full text link
    We study the Ising model on the triangular lattice with nearest-neighbor couplings KnnK_{\rm nn}, next-nearest-neighbor couplings Knnn>0K_{\rm nnn}>0, and a magnetic field HH. This work is done by means of finite-size scaling of numerical results of transfer matrix calculations, and Monte Carlo simulations. We determine the phase diagram and confirm the character of the critical manifolds. The emphasis of this work is on the antiferromagnetic case Knn<0K_{\rm nn}<0, but we also explore the ferromagnetic regime Knn≄0K_{\rm nn}\ge 0 for H=0. For Knn<0K_{\rm nn}<0 and H=0 we locate a critical phase presumably covering the whole range −∞<Knn<0-\infty < K_{\rm nn}<0. For Knn<0K_{\rm nn}<0, H≠0H\neq 0 we locate a plane of phase transitions containing a line of tricritical three-state Potts transitions. In the limit H→∞H \to \infty this line leads to a tricritical model of hard hexagons with an attractive next-nearest-neighbor potential

    Protected Qubits and Chern Simons theories in Josephson Junction Arrays

    Full text link
    We present general symmetry arguments that show the appearance of doubly denerate states protected from external perturbations in a wide class of Hamiltonians. We construct the simplest spin Hamiltonian belonging to this class and study its properties both analytically and numerically. We find that this model generally has a number of low energy modes which might destroy the protection in the thermodynamic limit. These modes are qualitatively different from the usual gapless excitations as their number scales as the linear size (instead of volume) of the system. We show that the Hamiltonians with this symmetry can be physically implemented in Josephson junction arrays and that in these arrays one can eliminate the low energy modes with a proper boundary condition. We argue that these arrays provide fault tolerant quantum bits. Further we show that the simplest spin model with this symmetry can be mapped to a very special Z_2 Chern-Simons model on the square lattice. We argue that appearance of the low energy modes and the protected degeneracy is a natural property of lattice Chern-Simons theories. Finally, we discuss a general formalism for the construction of discrete Chern-Simons theories on a lattice.Comment: 20 pages, 7 figure

    Fisher Zeroes and Singular Behaviour of the Two Dimensional Potts Model in the Thermodynamic Limit

    Get PDF
    The duality transformation is applied to the Fisher zeroes near the ferromagnetic critical point in the q>4 state two dimensional Potts model. A requirement that the locus of the duals of the zeroes be identical to the dual of the locus of zeroes in the thermodynamic limit (i) recovers the ratio of specific heat to internal energy discontinuity at criticality and the relationships between the discontinuities of higher cumulants and (ii) identifies duality with complex conjugation. Conjecturing that all zeroes governing ferromagnetic singular behaviour satisfy the latter requirement gives the full locus of such Fisher zeroes to be a circle. This locus, together with the density of zeroes is then shown to be sufficient to recover the singular form of the thermodynamic functions in the thermodynamic limit.Comment: 10 pages, 0 figures, LaTeX. Paper expanded and 2 references added clarifying duality relationships between discontinuities in higher cumulant

    On spherical averages of radial basis functions

    Get PDF
    A radial basis function (RBF) has the general form s(x)=∑k=1nakϕ(x−bk),x∈Rd,s(x)=\sum_{k=1}^{n}a_{k}\phi(x-b_{k}),\quad x\in\mathbb{R}^{d}, where the coefficients a 1,
,a n are real numbers, the points, or centres, b 1,
,b n lie in ℝ d , and φ:ℝ d →ℝ is a radially symmetric function. Such approximants are highly useful and enjoy rich theoretical properties; see, for instance (Buhmann, Radial Basis Functions: Theory and Implementations, [2003]; Fasshauer, Meshfree Approximation Methods with Matlab, [2007]; Light and Cheney, A Course in Approximation Theory, [2000]; or Wendland, Scattered Data Approximation, [2004]). The important special case of polyharmonic splines results when φ is the fundamental solution of the iterated Laplacian operator, and this class includes the Euclidean norm φ(x)=‖x‖ when d is an odd positive integer, the thin plate spline φ(x)=‖x‖2log  ‖x‖ when d is an even positive integer, and univariate splines. Now B-splines generate a compactly supported basis for univariate spline spaces, but an analyticity argument implies that a nontrivial polyharmonic spline generated by (1.1) cannot be compactly supported when d>1. However, a pioneering paper of Jackson (Constr. Approx. 4:243–264, [1988]) established that the spherical average of a radial basis function generated by the Euclidean norm can be compactly supported when the centres and coefficients satisfy certain moment conditions; Jackson then used this compactly supported spherical average to construct approximate identities, with which he was then able to derive some of the earliest uniform convergence results for a class of radial basis functions. Our work extends this earlier analysis, but our technique is entirely novel, and applies to all polyharmonic splines. Furthermore, we observe that the technique provides yet another way to generate compactly supported, radially symmetric, positive definite functions. Specifically, we find that the spherical averaging operator commutes with the Fourier transform operator, and we are then able to identify Fourier transforms of compactly supported functions using the Paley–Wiener theorem. Furthermore, the use of Haar measure on compact Lie groups would not have occurred without frequent exposure to Iserles’s study of geometric integration

    Extended surface disorder in the quantum Ising chain

    Full text link
    We consider random extended surface perturbations in the transverse field Ising model decaying as a power of the distance from the surface towards a pure bulk system. The decay may be linked either to the evolution of the couplings or to their probabilities. Using scaling arguments, we develop a relevance-irrelevance criterion for such perturbations. We study the probability distribution of the surface magnetization, its average and typical critical behaviour for marginal and relevant perturbations. According to analytical results, the surface magnetization follows a log-normal distribution and both the average and typical critical behaviours are characterized by power-law singularities with continuously varying exponents in the marginal case and essential singularities in the relevant case. For enhanced average local couplings, the transition becomes first order with a nonvanishing critical surface magnetization. This occurs above a positive threshold value of the perturbation amplitude in the marginal case.Comment: 15 pages, 10 figures, Plain TeX. J. Phys. A (accepted

    Combinatorics of bicubic maps with hard particles

    Get PDF
    We present a purely combinatorial solution of the problem of enumerating planar bicubic maps with hard particles. This is done by use of a bijection with a particular class of blossom trees with particles, obtained by an appropriate cutting of the maps. Although these trees have no simple local characterization, we prove that their enumeration may be performed upon introducing a larger class of "admissible" trees with possibly doubly-occupied edges and summing them with appropriate signed weights. The proof relies on an extension of the cutting procedure allowing for the presence on the maps of special non-sectile edges. The admissible trees are characterized by simple local rules, allowing eventually for an exact enumeration of planar bicubic maps with hard particles. We also discuss generalizations for maps with particles subject to more general exclusion rules and show how to re-derive the enumeration of quartic maps with Ising spins in the present framework of admissible trees. We finally comment on a possible interpretation in terms of branching processes.Comment: 41 pages, 19 figures, tex, lanlmac, hyperbasics, epsf. Introduction and discussion/conclusion extended, minor corrections, references adde
    • 

    corecore