3,505 research outputs found

    Landau level splitting due to graphene superlattices

    Full text link
    The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider non-interacting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zig-zag or along the arm-chair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the arm-chair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.Comment: 12 pages, 9 figure

    Effective Hamiltonians for holes in antiferromagnets: a new approach to implement forbidden double occupancy

    Full text link
    A coherent state representation for the electrons of ordered antiferromagnets is used to derive effective Hamiltonians for the dynamics of holes in such systems. By an appropriate choice of these states, the constraint of forbidden double occupancy can be implemented rigorously. Using these coherent states, one arrives at a path integral representation of the partition function of the systems, from which the effective Hamiltonians can be read off. We apply this method to the t-J model on the square lattice and on the triangular lattice. In the former case, we reproduce the well-known fermion-boson Hamiltonian for a hole in a collinear antiferromagnet. We demonstrate that our method also works for non-collinear antiferromagnets by calculating the spectrum of a hole in the triangular antiferromagnet in the self-consistent Born approximation and by comparing it with numerically exact results.Comment: 9 pages, Latex, 6 figure

    Heisenberg antiferromagnet with anisotropic exchange on the Kagome lattice: Description of the magnetic properties of volborthite

    Full text link
    We study the properties of the Heisenberg antiferromagnet with spatially anisotropic nearest-neighbour exchange couplings on the kagome net, i.e. with coupling J in one lattice direction and couplings J' along the other two directions. For J/J' > 1, this model is believed to describe the magnetic properties of the mineral volborthite. In the classical limit, it exhibits two kinds of ground states: a ferrimagnetic state for J/J' < 1/2 and a large manifold of canted spin states for J/J' > 1/2. To include quantum effects self-consistently, we investigate the Sp(N) symmetric generalisation of the original SU(2) symmetric model in the large-N limit. In addition to the dependence on the anisotropy, the Sp(N) symmetric model depends on a parameter kappa that measures the importance of quantum effects. Our numerical calculations reveal that in the kappa-J/J' plane, the system shows a rich phase diagram containing a ferrimagnetic phase, an incommensurate phase, and a decoupled chain phase, the latter two with short- and long-range order. We corroborate these results by showing that the boundaries between the various phases and several other features of the Sp(N) phase diagram can be determined by analytical calculations. Finally, the application of a block-spin perturbation expansion to the trimerised version of the original spin-1/2 model leads us to suggest that in the limit of strong anisotropy, J/J' >> 1, the ground state of the original model is a collinearly ordered antiferromagnet, which is separated from the incommensurate state by a quantum phase transition.Comment: 21 pages, 22 figures. Final version, PRB in pres
    • …
    corecore