2,569 research outputs found

    The FIR-absorption of short period quantum wires and the transition from one to two dimensions

    Full text link
    We investigate the FIR-absorption of short period parallel quantum wires in a perpendicular quantizing magnetic field. The external time-dependent electric field is linearly polarized along the wire modulation. The mutual Coulomb interaction of the electrons is treated self-consistently in the ground state and in the absorption calculation within the Hartree approximation. We consider the effects of a metal gate grating coupler, with the same or with a different period as the wire modulation, on the absorption. The evolution of the magnetoplasmon in the nonlocal region where it is split into several Bernstein modes is discussed in the transition from: narrow to broad wires, and isolated to overlapping wires. We show that in the case of narrow and not strongly modulated wires the absorption can be directly correlated with the underlying electronic bandstructure.Comment: 15 pages, 9 figures, Revtex, to appear in Phys. Rev.

    Dynamics of a thin liquid film with surface rigidity and spontaneous curvature

    Full text link
    The effect of rigid surfaces on the dynamics of thin liquid films which are amenable to the lubrication approximation is considered. It is shown that the Helfrich energy of the layer gives rise to additional terms in the time-evolution equations of the liquid film. The dynamics is found to depend on the absolute value of the spontaneous curvature, irrespective of its sign. Due to the additional terms, a novel finite wavelength instability of flat rigid interfaces can be observed. Furthermore, the dependence of the shape of a droplet on the bending rigidity as well as on the spontaneous curvature is discussed.Comment: 4 pages, 5 figure

    Qualitative Analysis of Partially-observable Markov Decision Processes

    Get PDF
    We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based strategy to achieve the objective with probability~1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis of POMDP s with parity objectives (a canonical form to express omega-regular objectives) and its subclasses. Our contribution consists in establishing several upper and lower bounds that were not known in literature. Second, we present optimal bounds (matching upper and lower bounds) on the memory required by pure and randomized observation-based strategies for the qualitative analysis of POMDP s with parity objectives and its subclasses

    Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems

    Full text link
    We have studied the collective plasma excitations of a two-dimensional electron gas with an arbitrary lateral charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory based on the Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the equilibrium and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay particular attention to the evolution of the collective excitations as the system undergoes the transition from the ideal two-dimensional limit to the highly-localized one-dimensional limit. We also calculate the power absorption in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared (FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure

    Manifestation of the Hofstadter butterfly in far-infrared absorption

    Full text link
    The far-infrared absorption of a two-dimensional electron gas with a square-lattice modulation in a perpendicular constant magnetic field is calculated self-consistently within the Hartree approximation. For strong modulation and short period we obtain intra- and intersubband magnetoplasmon modes reflecting the subbands of the Hofstadter butterfly in two or more Landau bands. The character of the absorption and the correlation of the peaks to the number of flux quanta through each unit cell of the periodic potential depends strongly on the location of the chemical potential with respect to the subbands, or what is the same, on the density of electrons in the system.Comment: RevTeX file + 4 postscript figures, to be published Phys. Rev. B Rapid Com

    Histological Consequences of Needle-Nerve Contact following Nerve Stimulation in a Pig Model

    Get PDF
    Background. Nerve stimulation can facilitate correct needle placement in peripheral regional anesthesia. The aim of this study was to determine whether the high threshold current is associated with reduced nerve injury due to fewer needle-nerve contacts compared with low current. Methods. In anaesthetized pigs, thirty-two nerves of the brachial plexus underwent needle placement at low (0.2 mA) or high current (1.0 mA). The occurrence of needle-nerve contact was recorded. After 48 hours, the nerves were analyzed for occurrence of histological changes. Nerve injury was scored ranging from 0 (no injury) to 4 (severe injury). Results. The frequency of needle-nerve contact was 94% at low compared to 6% at high current. The score was significantly higher at low (median [interquartile range] 2.0 [1.0-2.0]) compared to high current (0.0 [0.0-1.0] P = .001). Conclusions. Inflammatory responses were directly related to needle-nerve contacts. Hence, posttraumatic inflammation may be diminished using higher current for nerve localization
    corecore