1,414 research outputs found

    Lukewarm black holes in quadratic gravity

    Full text link
    Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon

    New Models of General Relativistic Static Thick Disks

    Full text link
    New families of exact general relativistic thick disks are constructed using the ``displace, cut, fill and reflect'' method. A class of functions used to ``fill'' the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the function's curvature further restrict the ranges of the free parameters that allow phisically acceptable disks. Then this class of functions together with the Schwarzschild metric is employed to construct thick disks in isotropic, Weyl and Schwarzschild canonical coordinates. In these last coordinates an additional function must be added to one of the metric coefficients to generate exact disks. Disks in isotropic and Weyl coordinates satisfy all energy conditions, but those in Schwarzschild canonical coordinates do not satisfy the dominant energy condition.Comment: 27 pages, 14 figure

    Maximal acceleration or maximal accelerations?

    Get PDF
    We review the arguments supporting the existence of a maximal acceleration for a massive particle and show that different values of this upper limit can be predicted in different physical situations.Comment: 13 pages, Latex, to be published in Int. J. Mod. Phys.

    Periodic and discrete Zak bases

    Full text link
    Weyl's displacement operators for position and momentum commute if the product of the elementary displacements equals Planck's constant. Then, their common eigenstates constitute the Zak basis, each state specified by two phase parameters. Upon enforcing a periodic dependence on the phases, one gets a one-to-one mapping of the Hilbert space on the line onto the Hilbert space on the torus. The Fourier coefficients of the periodic Zak bases make up the discrete Zak bases. The two bases are mutually unbiased. We study these bases in detail, including a brief discussion of their relation to Aharonov's modular operators, and mention how they can be used to associate with the single degree of freedom of the line a pair of genuine qubits.Comment: 15 pages, 3 figures; displayed abstract is shortened, see the paper for the complete abstrac

    The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge

    Full text link
    A general analytic procedure is developed for the post-Newtonian limit of f(R)f(R)-gravity with metric approach in the Jordan frame by using the harmonic gauge condition. In a pure perturbative framework and by using the Green function method a general scheme of solutions up to (v/c)4(v/c)^4 order is shown. Considering the Taylor expansion of a generic function ff it is possible to parameterize the solutions by derivatives of ff. At Newtonian order, (v/c)2(v/c)^2, all more important topics about the Gauss and Birkhoff theorem are discussed. The corrections to "standard" gravitational potential (tttt-component of metric tensor) generated by an extended uniform mass ball-like source are calculated up to (v/c)4(v/c)^4 order. The corrections, Yukawa and oscillating-like, are found inside and outside the mass distribution. At last when the limit fRf\rightarrow R is considered the f(R)f(R)-gravity converges in General Relativity at level of Lagrangian, field equations and their solutions.Comment: 16 pages, 10 figure

    A double-slit `which-way' experiment on the complementarity--uncertainty debate

    Full text link
    A which-way measurement in Young's double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenberg's uncertainty principle: distinguishing two positions a distance s apart transfers a random momentum q \sim \hbar/s to the particle. This claim has been subject to debate: Scully et al. asserted that in some situations interference can be destroyed with no momentum transfer, while Storey et al. asserted that Bohr's stance is always valid. We address this issue using the experimental technique of weak measurement. We measure a distribution for q that spreads well beyond [-\hbar/s, \hbar/s], but nevertheless has a variance consistent with zero. This weakvalued momentum-transfer distribution P_{wv}(q) thus reflects both sides of the debate.Comment: 13 pages, 4 figure

    Weyl Card Diagrams and New S-brane Solutions of Gravity

    Full text link
    We construct a new card diagram which accurately draws Weyl spacetimes and represents their global spacetime structure, singularities, horizons and null infinity. As examples we systematically discuss properties of a variety of solutions including black holes as well as recent and new time-dependent gravity solutions which fall under the S-brane class. The new time-dependent Weyl solutions include S-dihole universes, infinite arrays and complexified multi-rod solutions. Among the interesting features of these new solutions is that they have near horizon scaling limits and describe the decay of unstable objects.Comment: 78 pages, 32 figures. v2 added referenc

    Detecting Hidden Differences via Permutation Symmetries

    Full text link
    We present a method for describing and characterizing the state of N particles that may be distinguishable in principle but not in practice due to experimental limitations. The technique relies upon a careful treatment of the exchange symmetry of the state among experimentally accessible and experimentally inaccessible degrees of freedom. The approach we present allows a new formalisation of the notion of indistinguishability and can be implemented easily using currently available experimental techniques. Our work is of direct relevance to current experiments in quantum optics, for which we provide a specific implementation.Comment: 8 pages, 1 figur

    Dark Energy and the mass of galaxy clusters

    Get PDF
    Up to now, Dark Energy evidences are based on the dynamics of the universe on very large scales, above 1 Gpc. Assuming it continues to behave like a cosmological constant Λ\Lambda on much smaller scales, I discuss its effects on the motion of non-relativistic test-particles in a weak gravitational field and I propose a way to detect evidences of Λ0\Lambda \neq 0 at the scale of about 1 Mpc: the main ingredient is the measurement of galaxy cluster masses.Comment: 5 pages, no figures, references adde

    Discrete phase space based on finite fields

    Full text link
    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2N x 2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our N x N phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space.Comment: 60 pages; minor corrections and additional references in v2 and v3; improved historical introduction in v4; references to quantum error correction in v5; v6 corrects the value quoted for the number of similarity classes for N=
    corecore