9,392 research outputs found
Warren McCulloch and the British cyberneticians
Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. He interacted regularly with most of the main figures on the British cybernetics scene, forming close friendships and collaborations with several, as well as mentoring others. Many of these interactions stemmed from a 1949 visit to London during which he gave the opening talk at the inaugural meeting of the Ratio Club, a gathering of brilliant, mainly young, British scientists working in areas related to cybernetics. This paper traces some of these relationships and interaction
Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites
In conventional approaches to the homogenization of random particulate
composites, both the distribution and size of the component phase particles are
often inadequately taken into account. Commonly, the spatial distributions are
characterized by volume fraction alone, while the electromagnetic response of
each component particle is represented as a vanishingly small depolarization
volume. The strong-permittivity-fluctuation theory (SPFT) provides an
alternative approach to homogenization wherein a comprehensive description of
distributional statistics of the component phases is accommodated. The
bilocally-approximated SPFT is presented here for the anisotropic homogenized
composite which arises from component phases comprising ellipsoidal particles.
The distribution of the component phases is characterized by a two-point
correlation function and its associated correlation length. Each component
phase particle is represented as an ellipsoidal depolarization region of
nonzero volume. The effects of depolarization volume and correlation length are
investigated through considering representative numerical examples. It is
demonstrated that both the spatial extent of the component phase particles and
their spatial distributions are important factors in estimating coherent
scattering losses of the macroscopic field.Comment: Typographical error in eqn. 16 in WRM version is corrected in arxiv
versio
Breathers in the weakly coupled topological discrete sine-Gordon system
Existence of breather (spatially localized, time periodic, oscillatory)
solutions of the topological discrete sine-Gordon (TDSG) system, in the regime
of weak coupling, is proved. The novelty of this result is that, unlike the
systems previously considered in studies of discrete breathers, the TDSG system
does not decouple into independent oscillator units in the weak coupling limit.
The results of a systematic numerical study of these breathers are presented,
including breather initial profiles and a portrait of their domain of existence
in the frequency-coupling parameter space. It is found that the breathers are
uniformly qualitatively different from those found in conventional spatially
discrete systems.Comment: 19 pages, 4 figures. Section 4 (numerical analysis) completely
rewritte
Quantum affine Toda solitons
We review some of the progress in affine Toda field theories in recent years,
explain why known dualities cannot easily be extended, and make some
suggestions for what should be sought instead.Comment: 16pp, LaTeX. Minor revision
Depolarization regions of nonzero volume in bianisotropic homogenized composites
In conventional approaches to the homogenization of random particulate
composites, the component phase particles are often treated mathematically as
vanishingly small, point-like entities. The electromagnetic responses of these
component phase particles are provided by depolarization dyadics which derive
from the singularity of the corresponding dyadic Green functions. Through
neglecting the spatial extent of the depolarization region, important
information may be lost, particularly relating to coherent scattering losses.
We present an extension to the strong-property-fluctuation theory in which
depolarization regions of nonzero volume and ellipsoidal geometry are
accommodated. Therein, both the size and spatial distribution of the component
phase particles are taken into account. The analysis is developed within the
most general linear setting of bianisotropic homogenized composite mediums
(HCMs). Numerical studies of the constitutive parameters are presented for
representative examples of HCM; both Lorentz-reciprocal and
Lorentz-nonreciprocal HCMs are considered. These studies reveal that estimates
of the HCM constitutive parameters in relation to volume fraction, particle
eccentricity, particle orientation and correlation length are all significantly
influenced by the size of the component phase particles
Counterposition and negative phase velocity in uniformly moving dissipative materials
The Lorentz transformations of electric and magnetic fields were implemented
to study (i) the refraction of linearly polarized plane waves into a half-space
occupied by a uniformly moving material, and (ii) the traversal of linearly
polarized Gaussian beams through a uniformly moving slab. Motion was taken to
occur tangentially to the interface(s) and in the plane of incidence. The
moving materials were assumed to be isotropic, homogeneous, dissipative
dielectric materials from the perspective of a co-moving observer. Two
different moving materials were considered: from the perspective of a co-moving
observer, material A supports planewave propagation with only positive phase
velocity, whereas material B supports planewave propagation with both positive
and negative phase velocity, depending on the polarization state. For both
materials A and B, the sense of the phase velocity and whether or not
counterposition occurred, as perceived by a nonco-moving observer, could be
altered by varying the observer's velocity. Furthermore, the lateral position
of a beam upon propagating through a uniformly moving slab made of material A,
as perceived by a nonco-moving observer, could be controlled by varying the
observer's velocity. In particular, at certain velocities, the transmitted beam
emerged from the slab laterally displaced in the direction opposite to the
direction of incident beam. The transmittances of a uniformly moving slab made
of material B were very small and the energy density of the transmitted beam
was largely concentrated in the direction normal to the slab, regardless of the
observer's velocity
Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials
An ambichiral structure comprising sheets of an anisotropic dielectric
material rejects normally incident plane waves of one circular polarization
(CP) state but not of the other CP state, in its fundamental Bragg regime.
However, if the same structure is made of an dielectric--magnetic material with
indefinite permittivity and permeability dyadics, it may function as a
polarization--universal rejection filter because two of the four planewave
components of the electromagnetic field phasors in each sheet are of the
positive--phase--velocity type and two are of the negative--phase--velocity
type.Comment: Cleaned citations in the tex
The phase plane of moving discrete breathers
We study anharmonic localization in a periodic five atom chain with
quadratic-quartic spring potential. We use discrete symmetries to eliminate the
degeneracies of the harmonic chain and easily find periodic orbits. We apply
linear stability analysis to measure the frequency of phonon-like disturbances
in the presence of breathers and to analyze the instabilities of breathers. We
visualize the phase plane of breather motion directly and develop a technique
for exciting pinned and moving breathers. We observe long-lived breathers that
move chaotically and a global transition to chaos that prevents forming moving
breathers at high energies.Comment: 8 pages text, 4 figures, submitted to Physical Review Letters. See
http://www.msc.cornell.edu/~houle/localization
The molecular epidemiology of variant CJD
The emergence of the novel prion diseases bovine spongiform encephalopathy (BSE) and, subsequently, variant Creutzfeldt-Jakob disease (vCJD) in epidemic forms has attracted much scientific attention. The oral transmission of these disorders, the causative relationship of vCJD to BSE and the resistance of the transmissible agents in both disorders to conventional forms of decontamination has caused great public health concern. The size of the still emerging vCJD epidemic is thankfully much lower than some early published estimates. This paper reviews current knowledge of the factors that influence the development of vCJD: the properties of the infectious agent; the route of inoculation and individual susceptibility factors. The current epidemiological data are reviewed, along with relevant animal transmission studies. In terms of genetic susceptibility, the best characterised is the common single nucleotide polymorphism at codon 129 of prion protein gene. Current biomarkers and future areas of research will be discussed. These issues are important in informing precautionary measures and the ongoing monitoring of vCJD
Real-time information processing of environmental sensor network data using Bayesian Gaussian processes
In this article, we consider the problem faced by a sensor network operator who must infer, in real time, the value of some environmental parameter that is being monitored at discrete points in space and time by a sensor network. We describe a powerful and generic approach built upon an efficient multi-output Gaussian process that facilitates this information acquisition and processing. Our algorithm allows effective inference even with minimal domain knowledge, and we further introduce a formulation of Bayesian Monte Carlo to permit the principled management of the hyperparameters introduced by our flexible models. We demonstrate how our methods can be applied in cases where the data is delayed, intermittently missing, censored, and/or correlated. We validate our approach using data collected from three networks of weather sensors and show that it yields better inference performance than both conventional independent Gaussian processes and the Kalman filter. Finally, we show that our formalism efficiently reuses previous computations by following an online update procedure as new data sequentially arrives, and that this results in a four-fold increase in computational speed in the largest cases considered
- …