4,154 research outputs found

    Manufacturing employment in east Pakistan 1960

    Get PDF

    Color separate singlets in e+ee^+e^- annihilation

    Get PDF
    We use the method of color effective Hamiltonian to study the properties of states in which a gluonic subsystem forms a color singlet, and we will study the possibility that such a subsystem hadronizes as a separate unit. A parton system can normally be subdivided into singlet subsystems in many different ways, and one problem arises from the fact that the corresponding states are not orthogonal. We show that if only contributions of order 1/Nc21/N_c^2 are included, the problem is greatly simplified. Only a very limited number of states are possible, and we present an orthogonalization procedure for these states. The result is simple and intuitive and could give an estimate of the possibility to produce color separated gluonic subsystems, if no dynamical effects are important. We also study with a simple MC the possibility that configurations which correspond to "short strings" are dynamically favored. The advantage of our approach over more elaborate models is its simplicity, which makes it easier to estimate color reconnection effects in reactions which are more complicated than the relatively simple e+ee^+e^- annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new figure is added and Monte-Carlo results are re-analyzed, as suggested by the referee; To appear in Phys. Rev.

    Search for axion-like particles using a variable baseline photon regeneration technique

    Full text link
    We report the first results of the GammeV experiment, a search for milli-eV mass particles with axion-like couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10^{-7} GeV^{-1} (3.5x10^{-7} GeV^{-1}) in the limit of massless particles.Comment: 5 pages, 4 figures. This is the version accepted by PRL and includes updated limit

    Quantum Zeno subspaces

    Full text link
    The quantum Zeno effect is recast in terms of an adiabatic theorem when the measurement is described as the dynamical coupling to another quantum system that plays the role of apparatus. A few significant examples are proposed and their practical relevance discussed. We also focus on decoherence-free subspaces.Comment: 5 pages, 1 figure, to be published in Phys. Rev. Let

    Clan Properties in Parton Showers

    Full text link
    By considering clans as genuine elementary subprocesses, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans.Comment: (27 pages in Plain TeX plus 10 Postscript Figures, all compressed via uufiles) DFTT 7/9

    Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror

    Get PDF
    We calculate the thermal noise in half-infinite mirrors containing a layer of arbitrary thickness and depth made of excessively lossy material but with the same elastic material properties as the substrate. For the special case of a thin lossy layer on the surface of the mirror, the excess noise scales as the ratio of the coating loss to the substrate loss and as the ratio of the coating thickness to the laser beam spot size. Assuming a silica substrate with a loss function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot size and a 7 micrometers thick coating to avoid increasing the spectral density of displacement noise by more than 10%. A similar number is obtained for sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001) Replacement: Minor typo in Eq. 17 correcte

    Intermittency in Branching Processes

    Full text link
    We study the intermittency properties of two branching processes, one with a uniform and another with a singular splitting kernel. The asymptotic intermittency indices, as well as the leading corrections to the asymptotic linear regime are explicitly computed in an analytic framework. Both models are found to possess a monofractal spectrum with φq=q1\varphi_{q}=q-1. Relations with previous results are discussed.Comment: 20 pages, UCLA93/TEP/2

    Effect of heat treatment on mechanical dissipation in Ta2_2O5_5 coatings

    Get PDF
    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11\,K and 300\,K. We find the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200\,K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.Comment: accepted Classical and Quantum Gravity 201
    corecore