177,949 research outputs found
Interlacing Log-concavity of the Boros-Moll Polynomials
We introduce the notion of interlacing log-concavity of a polynomial sequence
, where is a polynomial of degree m with
positive coefficients . This sequence of polynomials is said to be
interlacing log-concave if the ratios of consecutive coefficients of
interlace the ratios of consecutive coefficients of for any . Interlacing log-concavity is stronger than the log-concavity. We show that
the Boros-Moll polynomials are interlacing log-concave. Furthermore we give a
sufficient condition for interlacing log-concavity which implies that some
classical combinatorial polynomials are interlacing log-concave.Comment: 10 page
Geometric phases induced in auxiliary qubits by many-body systems near its critical points
The geometric phase induced in an auxiliary qubit by a many-body system is
calculated and discussed. Two kinds of coupling between the auxiliary qubit and
the many-body system are considered, which lead to dephasing and dissipation in
the qubit, respectively. As an example, we consider the XY spin-chain
dephasingly couple to a qubit, the geometric phase induced in the qubit is
presented and discussed. The results show that the geometric phase might be
used to signal the critical points of the many-body system, and it tends to
zero with the parameters of the many-body system going away from the critical
points
Effect of Decoherence on the Dynamics of Bose-Einstein Condensates in a Double-well Potential
We study the dynamics of a Bose-Einstein condensate in a double-well
potential in the mean-field approximation. Decoherence effects are considered
by analyzing the couplings of the condensate to environments. Two kinds of
coupling are taken into account. With the first kind of coupling dominated, the
decoherence can enhance the self-trapping by increasing the damping of the
oscillations in the dynamics, while the decoherence from the second kind of
condensate-environment coupling leads to spoiling of the quantum tunneling and
self-trapping.Comment: for color figures, see PR
- …