5 research outputs found

    First results from the MIT optical rapid imaging system (MORIS) on the IRTF: A stellar occultation by Pluto and a transit by exoplanet XO-2b

    Get PDF
    We present a high-speed, visible-wavelength imaging instrument: MORIS (the MIT Optical Rapid Imaging System). MORIS is mounted on the 3 m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Its primary component is an Andor iXon camera, a nearly 60" square field of view with high quantum efficiency, low read noise, low dark current, and full-frame readout rates ranging from as slow as desired to a maximum of between 3.5 Hz and 35 Hz (depending on the mode; read noise of 6 pixel and 49 pixel with electron-multiplying gain = 1 , respectively). User-selectable binning and subframing can increase the cadence to a few hundred hertz. An electron-multiplying mode can be employed for photon counting, effectively reducing the read noise to subelectron levels at the expense of dynamic range. Data cubes, or individual frames, can be triggered to several-nanosecond accuracy using the Global Positioning System. MORIS is mounted on the side-facing exit window of SpeX, allowing simultaneous near-infrared and visible observations. Here, we describe the components, setup, and measured characteristics of MORIS. We also report results from the first science observations: the 2008 June 24 stellar occultation by Pluto and an extrasolar planetary transit by XO-2b. The Pluto occultation of a 15.8 magnitude star has a signal-to-noise ratio of 35 per atmospheric scale height and a midtime error of 0.32 s. The XO-2b transit reaches photometric precision of 0.5 mmag in 2 minutes and has a midtime timing precision of 23 s.United States. National Aeronautics and Space Administration (grant NNX07AK95G
    corecore