15,503 research outputs found
New variables, the gravitational action, and boosted quasilocal stress-energy-momentum
This paper presents a complete set of quasilocal densities which describe the
stress-energy-momentum content of the gravitational field and which are built
with Ashtekar variables. The densities are defined on a two-surface which
bounds a generic spacelike hypersurface of spacetime. The method used
to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a
suitable covariant action principle for the Ashtekar variables. As such, the
theory presented here is an Ashtekar-variable reformulation of the metric
theory of quasilocal stress-energy-momentum originally due to Brown and York.
This work also investigates how the quasilocal densities behave under
generalized boosts, i. e. switches of the slice spanning . It is
shown that under such boosts the densities behave in a manner which is similar
to the simple boost law for energy-momentum four-vectors in special relativity.
The developed formalism is used to obtain a collection of two-surface or boost
invariants. With these invariants, one may ``build" several different mass
definitions in general relativity, such as the Hawking expression. Also
discussed in detail in this paper is the canonical action principle as applied
to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and
improved quite a bit. To appear in Classical and Quantum Gravit
Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene
Atomically resolved imaging and spectroscopic characteristics of
graphene grown by chemical vapor deposition (CVD) on copper
foils are investigated and compared with those of mechanical
exfoliated graphene on SiO_2. For exfoliated graphene, the local
spectral deviations from ideal behavior may be attributed to strain
induced by the SiO_2 substrate. For CVD grown graphene, the
lattice structure appears strongly distorted by the underlying
copper, with regions in direct contact with copper showing nearly
square lattices whereas suspended regions from thermal relaxation
exhibiting nearly honeycomb or hexagonal lattice structures. The
electronic density of states (DOS) correlates closely with the
atomic arrangements of carbon, showing excess zero-bias
tunneling conductance and nearly energy-independent DOS for
strongly distorted graphene, in contrast to the linearly dispersive
DOS for suspended graphene. These results suggest that graphene
can interact strongly with both metallic and dielectric materials in
close proximity, leading to non-negligible modifications to the
electronic properties
Time Delay Predictions in a Modified Gravity Theory
The time delay effect for planets and spacecraft is obtained from a fully
relativistic modified gravity theory including a fifth force skew symmetric
field by fitting to the Pioneer 10/11 anomalous acceleration data. A possible
detection of the predicted time delay corrections to general relativity for the
outer planets and future spacecraft missions is considered. The time delay
correction to GR predicted by the modified gravity is consistent with the
observational limit of the Doppler tracking measurement reported by the Cassini
spacecraft on its way to Saturn, and the correction increases to a value that
could be measured for a spacecraft approaching Neptune and Pluto.Comment: 5 pages, LaTex file, no figures. Corrections to Table
Spreading of Latex Particles on a Substrate
We have investigated both experimentally and theoretically the spreading
behavior of latex particles deposited on solid substrates. These particles,
which are composed of cross-linked polymer chains, have an intrinsic elastic
modulus. We show that the elasticity must be considered to account for the
observed contact angle between the particle and the solid substrate, as
measured through atomic force microscopy techniques. In particular, the work of
adhesion computed within our model can be significantly larger than that from
the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let
Lightcone reference for total gravitational energy
We give an explicit expression for gravitational energy, written solely in
terms of physical spacetime geometry, which in suitable limits agrees with the
total Arnowitt-Deser-Misner and Trautman-Bondi-Sachs energies for
asymptotically flat spacetimes and with the Abbot-Deser energy for
asymptotically anti-de Sitter spacetimes. Our expression is a boundary value of
the standard gravitational Hamiltonian. Moreover, although it stands alone as
such, we derive the expression by picking the zero-point of energy via a
``lightcone reference.''Comment: latex, 7 pages, no figures. Uses an amstex symbo
Hamiltonians for a general dilaton gravity theory on a spacetime with a non-orthogonal, timelike or spacelike outer boundary
A generalization of two recently proposed general relativity Hamiltonians, to
the case of a general (d+1)-dimensional dilaton gravity theory in a manifold
with a timelike or spacelike outer boundary, is presented.Comment: 17 pages, 3 figures. Typos correcte
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
Generating Spin Currents in Semiconductors with the Spin Hall Effect
We investigate electrically-induced spin currents generated by the spin Hall
effect in GaAs structures that distinguish edge effects from spin transport.
Using Kerr rotation microscopy to image the spin polarization, we demonstrate
that the observed spin accumulation is due to a transverse bulk electron spin
current, which can drive spin polarization nearly 40 microns into a region in
which there is minimal electric field. Using a model that incorporates the
effects of spin drift, we determine the transverse spin drift velocity from the
magnetic field dependence of the spin polarization.Comment: 4 pages, 4 figure
Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2
Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene
Dinâmica espaço-temporal de Rhopalosiphum padi e disseminação de BYDV-PAV - calibração do modelo ABISM utilizando microparcelas.
Orientador: JosĂ© MaurĂcio Cunha Fernandes
- …