251 research outputs found
Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer
BACKGROUND: Cabozantinib significantly prolonged progression-free survival (PFS) versus a placebo in patients with progressive, metastatic medullary thyroid cancer (MTC; P <.001). An exploratory analysis of phase 3 trial data evaluated the influence of rearranged during transfection (RET) and RAS (HRAS, KRAS, and NRAS) mutations on cabozantinib clinical activity. METHODS: Patients (n = 330) were randomized to cabozantinib (140 mg/day) or a placebo. The primary endpoint was PFS. Additional outcome measures included PFS, objective response rates (ORRs), and adverse events in RET and RAS mutation subgroups. RESULTS: Among all study patients, 51.2% were RET mutationâpositive (38.2% with RET M918T), 34.8% were RET mutationâunknown, and 13.9% were RET mutationânegative. Sixteen patients were RAS mutationâpositive. Cabozantinib appeared to prolong PFS versus the placebo in the RET mutationâpositive subgroup (hazard ratio [HR], 0.23; 95% confidence interval [CI], 0.14-0.38; P <.0001), the RET mutationâunknown subgroup (HR, 0.30; 95% CI, 0.16-0.57; P =.0001), and the RAS mutationâpositive subgroup (HR, 0.15; 95% CI, 0.02-1.10; P =.0317). The RET M918T subgroup achieved the greatest observed PFS benefit from cabozantinib versus the placebo (HR, 0.15; 95% CI, 0.08-0.28; P <.0001). The ORRs for RET mutationâpositive, RET mutationânegative, and RAS mutationâpositive patients were 32%, 22%, and 31%, respectively. No PFS benefit was observed in patients lacking both RET and RAS mutations, although the ORR was 21%. The safety profile for all subgroups was similar to that for the overall cabozantinib arm. CONCLUSIONS: These data suggest that cabozantinib provides the greatest clinical benefit to patients with MTC who have RET M918T or RAS mutations. However, a prospective trial is needed to confirm the relation between genetic variation and the response to cabozantinib. Cancer 2016;122:3856â3864. © 2016 American Cancer Society
The Molecular Signature More Than the Site of Localization Defines the Origin of the Malignancy
The diagnosis of the primary origin of metastases to the thyroid gland is not easy, in particular in case of concomitant lung adenocarcinoma which shares several immunophenotypical features. Although rare, these tumors should be completely characterized in order to set up specific therapies. This is the case of a 64-years-old woman referred to our institution for a very advanced neoplastic disease diagnosed both as poorly differentiated/anaplastic thyroid cancer (PDTC/ATC) for the huge involvement of the neck and concomitant lung adenocarcinoma (LA). Neither the clinical features and the imaging evaluation nor the tumor markers allowed a well-defined diagnosis. Moreover, the histologic features of the thyroid and lung biopsies confirmed the synchronous occurrence of two different tumors. The molecular analysis showed a c.34G>T (p.G12C) mutation in the codon 12 of K-RAS gene, in both tissues. Since, this mutation is highly prevalent in LA and virtually absent in PDTC/ATC the lung origin of the malignancy was assumed, and the patient was addressed to the correct therapeutic strategy
New results on solar neutrino fluxes from 192 days of Borexino data
We report the direct measurement of the ^7Be solar neutrino signal rate
performed with the Borexino detector at the Laboratori Nazionali del Gran
Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is
49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation
for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma
level. Our result is the first direct measurement of the survival probability
for solar nu_e in the transition region between matter-enhanced and
vacuum-driven oscillations. The measurement improves the experimental
determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the
magnetic moment of neutrinos
The Borexino detector at the Laboratori Nazionali del Gran Sasso
Borexino, a large volume detector for low energy neutrino spectroscopy, is
currently running underground at the Laboratori Nazionali del Gran Sasso,
Italy. The main goal of the experiment is the real-time measurement of sub MeV
solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron
capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid
scintillator. This paper is mostly devoted to the description of the detector
structure, the photomultipliers, the electronics, and the trigger and
calibration systems. The real performance of the detector, which always meets,
and sometimes exceeds, design expectations, is also shown. Some important
aspects of the Borexino project, i.e. the fluid handling plants, the
purification techniques and the filling procedures, are not covered in this
paper and are, or will be, published elsewhere (see Introduction and
Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI
A Phase II Trial of the Multitargeted Tyrosine Kinase Inhibitor Lenvatinib (E7080) in Advanced Medullary Thyroid Cancer
Positive results of phase I studies evaluating lenvatinib in solid tumors, including thyroid cancer, prompted a phase II trial in advanced medullary thyroid carcinoma (MTC)
A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment
Lenvatinib is an oral, multitargeted tyrosine kinase inhibitor of the vascular endothelial growth factor receptors 1 through 3 (VEGFR1-VEGFR3), fibroblast growth factor receptors 1 through 4 (FGFR1-FGFR4), platelet-derived growth factor receptor α (PDGFRα), ret proto-oncogene (RET), and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) signaling networks implicated in tumor angiogenesis. Positive phase 1 results in solid tumors prompted a phase 2 trial in patients with advanced, radioiodine-refractory, differentiated thyroid cancer (RR-DTC)
Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos: A Real Time Detector for Low Energy Solar Neutrinos
BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics
Measurements of extremely low radioactivity levels in BOREXINO
The techniques researched, developed and applied towards the measurement of
radioisotope concentrations at ultra-low levels in the real-time solar neutrino
experiment BOREXINO at Gran Sasso are presented and illustrated with specific
results of widespread interest. We report the use of low-level germanium gamma
spectrometry, low-level miniaturized gas proportional counters and low
background scintillation detectors developed in solar neutrino research. Each
now sets records in its field. We additionally describe our techniques of
radiochemical ultra-pure, few atom manipulations and extractions. Forefront
measurements also result from the powerful combination of neutron activation
and low-level counting. Finally, with our techniques and commercially available
mass spectrometry and atomic absorption spectroscopy, new low-level detection
limits for isotopes of interest are obtained.Comment: 27 pages, 5 figures. Submitted to Astroparticle Physics (17 Sep
2001). Spokesperson of the Borexino Collaboration: G. Bellini. Corresponding
author: W. Hampe
- âŠ