18,445 research outputs found

    產甲烷條件下吲哚類有機物的降解途徑

    Get PDF
    Degradation of indole by an indole degrading methanogenic consortium enriched from sewage sludge proceeded through a two step hydroxylation pathway yielding oxindole and isatin. The ability of this consortium to hydroxylate and subsequently degrade substituted indoles was investigated. Of the substituted indoles tested, the consortium was able to transform or degrade 3 methylindole and 3 indolyl acetate. Oxindole, 3 methyloxindole, and indoxyl were identified as degradation metabolites of indole, 3 methylindole, and 3 indolyl acetate, respectively. Isatin (indole 2, 3 dione) was produced as an intermediate when the consortium was amended with oxindole, which provided the evidence that degradation of indole proceeded through successive hydroxylation of the 2 and 3 positions prior to ring cleavage between the C 2 and C 3 atoms on the pyrrole ring of indole. The presence of a methyl group ( CH 3 ) at either the 1 or 2 position of indole inhibited the initial hydroxylation reaction. The substituted indole, 3 methylindole, was hydroxylated at the 2 position but not at the 3 position and could not be further metabolized through the oxindole isatin pathway. Indoxyl (indole 3 one), the deacetylated product of 3 indolyl acetate, was not hydroxylated at the 2 position and thus was not further metabolized by the consortium. When an H atom or electron donating group (i.e., CH 3 ) was present at the 3 position, hydroxylation proceeded at the 2 position, but the presence of electron withdrawing substituent groups (i.e., OH or COOH) at the 3 position inhibited hydroxylation

    An increase in TcT_c under hydrostatic pressure in the superconducting doped topological insulator Nb0.25_{0.25}Bi2_2Se3_3

    Full text link
    We report an unexpected positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator \NBS via dcdc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues \CBS and \SBS where smooth suppression of TcT_c is observed. Our results are consistent with recent Ginzburg-Landau theory predictions of a pressure-induced enhancement of TcT_c in the nematic multicomponent EuE_u state proposed to explain observations of rotational symmetry breaking in doped Bi2_2Se3_3 superconductors.Comment: 5 pages, 5 figure

    Small atom diffusion and breakdown of the Stokes–Einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy

    Get PDF
    Be diffusivity data in the bulk metallic glass forming alloy Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530 and 710 K, extending 85 K into the supercooled liquid state of the alloy. At the glass transition temperature Tg, a change in temperature dependence of the data is observed, and above Tg the diffusivity increases more quickly with temperature than below. The data in the supercooled liquid can be described by a modified Arrhenius expression based on a diffusion mechanism suggested earlier. The comparison with viscosity data in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5 reveals a breakdown of the Stokes–Einstein relation, indicating a cooperative diffusion mechanism in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5

    On the contribution of twist-3 multi-gluon correlation functions to single transverse-spin asymmetry in SIDIS

    Full text link
    We study the single spin asymmetry (SSA) induced by purely gluonic correlation inside a nucleon, in particular, by the three-gluon correlation functions in the transversely polarized nucleon, pp^\uparrow. This contribution is embodied as a twist-3 mechanism in the collinear factorization framework and controls the SSA to be observed in the DD-meson production with large transverse-momentum in semi-inclusive DIS (SIDIS), epeDXep^\uparrow \rightarrow eDX. We define the relevant three-gluon correlation functions in the nucleon, and determine their complete set at the twsit-3 level taking into account symmetry constraints in QCD. We derive the single-spin-dependent cross section for the DD-meson production in SIDIS, taking into account all the relevant contributions at the twist-3 level. The result is obtained in a manifestly gauge-invariant form as the factorization formula in terms of the three-gluon correlation functions and reveals the five independent structures with respect to the dependence on the azimuthal angle for the produced DD meson. We also demonstrate the remarkable relation between the twist-3 single-spin-dependent cross section and twist-2 cross sections for the DD-meson production, as a manifestation of universal structure behind the SSA in a variety of hard processes.Comment: 8 pages, 2 figures. To appear in the proceedings of the 19th International Spin Physics Symposium (SPIN2010), Juelich, Germany, Sept.27 - Oct.2, 201
    corecore