45 research outputs found

    Thermal Equation of State of Tantalum

    Full text link
    We have investigated the thermal equation of state of tantalum from first principles using the Linearized Augmented Plane Wave (LAPW) and pseudopotential methods for pressures up to 300 GPa and temperatures up to 10000 K. The equation of state at zero temperature was computed using LAPW. For finite temperatures, mixed basis pseudopotential computations were performed for 54 atom supercells. The vibrational contributions were obtained by computing the partition function using the particle in a cell model, and the the finite temperature electronic free energy was obtained from the LAPW band structures. We discuss the behavior of thermal equation of state parameters such as the Gr\"uneisen parameter γ\gamma, qq, the thermal expansivity α\alpha, the Anderson-Gr\"uneisen parameter δT\delta_T as functions of pressure and temperature. The calculated Hugoniot shows excellent agreement with shock-wave experiments. An electronic topological transition was found at approximately 200 GPa

    Investigation of structure and hydrogen bonding of super-hydrous phase B (HT) under pressure using first principles density functional calculations

    Get PDF
    High pressure behaviour of superhydrous phase B(HT) of Mg10Si3O14(OH)4 (Shy B) is investigated with the help of density functional theory based first principles calculations. In addition to the lattice parameters and equation of state, we use these calculations to determine the positional parameters of atoms as a function of pressure. Our results show that the compression induced structural changes involve cooperative distortions in the full geometry of the hydrogen bonds. The bond bending mechanism proposed by Hofmeister et al [1999] for hydrogen bonds to relieve the heightened repulsion due to short H--H contacts is not found to be effective in Shy B. The calculated O-H bond contraction is consistent with the observed blue shift in the stretching frequency of the hydrogen bond. These results establish that one can use first principles calculations to obtain reliable insights into the pressure induced bonding changes of complex minerals.Comment: 16 pages, 4 figure

    Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    Full text link
    The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte

    X-ray free electron laser heating of water and gold at high static pressure

    Get PDF
    The study of water at high pressure and temperature is essential for understanding planetary interiors but is hampered by the high reactivity of water at extreme conditions. Here, indirect X-ray laser heating of water in a diamond anvil cell is realized via a gold absorber, showing no evidence of reactivity
    corecore