24,596 research outputs found
Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene
From the perspective of bond relaxation and vibration, we have reconciled the
Raman shifts of graphene under the stimuli of the number-of-layer,
uni-axial-strain, pressure, and temperature in terms of the response of the
length and strength of the representative bond of the entire specimen to the
applied stimuli. Theoretical unification of the measurements clarifies that:
(i) the opposite trends of Raman shifts due to number-of-layer reduction
indicate that the G-peak shift is dominated by the vibration of a pair of atoms
while the D- and the 2D-peak shifts involves z-neighbor of a specific atom;
(ii) the tensile strain-induced phonon softening and phonon-band splitting
arise from the asymmetric response of the C3v bond geometry to the C2v
uni-axial bond elongation; (iii) the thermal-softening of the phonons
originates from bond expansion and weakening; and (iv) the pressure- stiffening
of the phonons results from bond compression and work hardening. Reproduction
of the measurements has led to quantitative information about the referential
frequencies from which the Raman frequencies shift, the length, energy, force
constant, Debye temperature, compressibility, elastic modulus of the C-C bond
in graphene, which is of instrumental importance to the understanding of the
unusual behavior of graphene
The effects of a family non-universal Z-prime boson on B--->pipi decays
Motivated by the measured large branching ratio of
(the so-called "" puzzle), we investigate the effects of a family
non-universal model on the tree-dominated decays. We
find that the coupling parameter with a
nontrivial new weak phase , which is relevant to the
contributions to the QCD penguin sector , is needed
to reconcile the observed discrepancy. Combined with the recent fitting results
from , and decays, the
parameter spaces are severely reduced but still not excluded entirely, implying
that both the "" and "" puzzles could be accommodated
simultaneously within such a family non-universal model.Comment: 28 pages, 4 figures. References and discussions added. To appear in
IJMP
Study of Decays in the Family Non-universal Models
In a combined investigation of the decays,
constraints on the related couplings in family non-universal
models are derived. We find that within the allowed parameter space, the
recently observed forward-backward asymmetry in the
decay can be explained, by flipping the signs of the Wilson coefficients
and . With the obtained constraints, we also calculate
the branching ratio of the decay. The upper bound of our
prediction is near the upper bound given by CDF Collaboration recently.Comment: 19 pages, 4 figures, some errors corrected; Journal versio
Looking for New Physics in B --> K^* \pi and B --> \rho K Decays
B --> K^* \pi and B --> \rho K decays involve the same quark-level processes
as B --> \pi K. Analyzing the measurements of the former decays might be able
to shed additional light on the new-physics hints in the current B --> \pi K
data. We perform fits to B --> K^* \pi and B --> \rho K decays, and find that
the data can be accommodated within the standard model. However, this agreement
is due principally to the large errors in the data, particularly the
CP-violating asymmetries. If the errors on the B --> K^* \pi and B --> \rho K
observables can be reduced, one will have a clearer sense of whether new
physics is present in these decays.Comment: 12 pages and 6 plots; version to appear in journa
Stabilization of charge ordering in La_(1/3)Sr_(2/3)FeO_(3-d) by magnetic exchange
The magnetic exchange energies in charge ordered La_(1/3)Sr_(2/3)FeO_(3-d)
(LSFO) and its parent compound LaFeO_(3) (LFO) have been determined by
inelastic neutron scattering. In LSFO, the measured ratio of ferromagnetic
exchange between Fe3+ - Fe5+ pairs (J_F) and antiferromagnetic exchange between
Fe3+ - Fe3+ pairs (J_AF) fulfills the criterion for charge ordering driven by
magnetic interactions (|J_F/J_AF| > 1). The 30% reduction of J_AF as compared
to LFO indicates that doped holes are delocalized, and charge ordering occurs
without a dominant influence from Coulomb interactions.Comment: 18 pages, 4 color figure
Oral Mucositis: An Update on Innate Immunity and New Interventional Targets
Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a significant unmet clinical need for head and neck cancer patients. The biological complexities of chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the innate immune responses. The coexistence of microbiome and innate immune components in oral mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-induced OM. In this review, we have updated the mechanisms involving innate immunity-governed inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of new interventional targets for the management of this severe morbidity in head and neck cancer patients. © International & American Associations for Dental Research 2020
A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain
Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87
- …