12,429 research outputs found
Laboratory studies of photodissociation processes relevant to the formation of cometary radicals
The strength of the C2(d 3 Pi g yields a 3 Pi u) Swan band emission in the spectra of cometary comae identifies this species as a prominent constituent of the coma gas. It was previously suggested that the formation of cometary C2 proceeds via the secondary photolysis of the C2H radical. The detection of C2H in the interstellar medium and the recent analysis of the radial variation in C2(delta V=O) surface brightness of Comet Halley support the postulate that C2 is a third-generation molecule. Measurement of the C2 and C2H translational energy distributions produced from the multiphoton dissociation (MPD) of acetylene at 193 nm are identified . Time-resolved FTIR emission studies of the nascent C2H radical formed in the C2H2 yields C2H + H reaction verify that this species is produced both vibrationally and electronically excited. A survey of the internal energy distributions of the C2 fragments produced from the MPD of acetylene using a high intensity ArF laser is currently in progress in the laboratory. Recent experiments have focused on the measurement of rotational energy distribution for the C2(A 1 Pi u, a 3 Pi u) fragments. The C2(a 3 Pi u) detection capability is currently being improved by performing this experiment in a molecular beam, thus allowing for discrimination between initial emission and laser-induced fluorescence (LIF). Although the experiments performed to date provide considerable evidence in support of C2H yields C2 + H reaction, there is an important distinction to be made when comparing the laboratory conditions to those typically found in comets. The C2H radicals generated in the laboratory experiments are formed vibrationally and/or electronically excited. Any rotationally/vibrationally excited C2H present in cometary comae will quickly undergo radiative relaxation in the infrared to their lowest rotational and vibrational state. Experiments are currently under way to confirm the cometary formation of C2 via the VUV dissociation of cold C2H
Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors
The ground state of KFeSe and other iron-based
selenide superconductors are doped antiferromagnetic semiconductors. There are
well defined iron local moments whose energies are separated from those of
conduction electrons by a large band gap in these materials. We propose that
the low energy physics of this system is governed by a model Hamiltonian of
interacting electrons with on-site ferromagnetic exchange interactions and
inter-site superexchange interactions. We have derived the effective pairing
potential of electrons under the linear spin-wave approximation and shown that
the superconductivity can be driven by mediating coherent spin wave excitations
in these materials. Our work provides a natural account for the coexistence of
superconducting and antiferromagnetic long range orders observed by neutron
scattering and other experiments.Comment: 4 pages, 3 figure
Incommensurate magnetic structure of CeRhIn5
The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is
determined using neutron diffraction. We find a magnetic wave vector
q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A
staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion,
spirals transversely along the c axis. The nearest neighbor moments on the
tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This
affects the value of staggered moment. The correct staggered moment is
0.374(5) Bohr magneton at 1.4
Breathing oscillations of a trapped impurity in a Bose gas
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1
preprint, 2011], we study breathing oscillations in the width of a harmonically
trapped impurity interacting with a separately trapped Bose gas. We provide an
intuitive physical picture of such dynamics at zero temperature, using a
time-dependent variational approach. In the Gross-Pitaevskii regime we obtain
breathing oscillations whose amplitudes are suppressed by self trapping, due to
interactions with the Bose gas. Introducing phonons in the Bose gas leads to
the damping of breathing oscillations and non-Markovian dynamics of the width
of the impurity, the degree of which can be engineered through controllable
parameters. Our results reproduce the main features of the impurity dynamics
observed by Catani et al. despite experimental thermal effects, and are
supported by simulations of the system in the Gross-Pitaevskii regime.
Moreover, we predict novel effects at lower temperatures due to self-trapping
and the inhomogeneity of the trapped Bose gas.Comment: 7 pages, 3 figure
Recommended from our members
A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools
Microgrids have become increasingly popular in the United States. Supported by favorable federal and local policies, microgrid projects can provide greater energy stability and resilience within a project site or community. This paper reviews major federal, state, and utility-level policies driving microgrid development in the United States. Representative U.S. demonstration projects are selected and their technical characteristics and non-technical features are introduced. The paper discusses trends in the technology development of microgrid systems as well as microgrid control methods and interactions within the electricity market. Software tools for microgrid design, planning, and performance analysis are illustrated with each tool's core capability. Finally, the paper summarizes the successes and lessons learned during the recent expansion of the U.S. microgrid industry that may serve as a reference for other countries developing their own microgrid industries
New magnetic phase in metallic V_{2-y}O_3 close to the metal insulator transition
We have observed two spin density wave (SDW) phases in hole doped metallic
V_{2-y}O_3, one evolves from the other as a function of doping, pressure or
temperature. They differ in their response to an external magnetic field, which
can also induce a transition between them. The phase boundary between these two
states in the temperature-, doping-, and pressure-dependent phase diagram has
been determined by magnetization and magnetotransport measurements. One phase
exists at high doping level and has already been described in the literature.
The second phase is found in a small parameter range close to the boundary to
the antiferromagnetic insulating phase (AFI). The quantum phase transitions
between these states as a function of pressure and doping and the respective
metamagnetic behavior observed in these phases are discussed in the light of
structurally induced changes of the band structure.Comment: REVTeX, 8 pages, 12 EPS figures, submitted to PR
Magnetic structure of antiferromagnetic NdRhIn5
The magnetic structure of antiferromagnetic NdRhIn5 has been determined using
neutron diffraction. It has a commensurate antiferromagnetic structure with a
magnetic wave vector (1/2,0,1/2) below T_N = 11K. The staggered Nd moment at
1.6K is 2.6mu_B aligned along the c-axis. We find the magnetic structure to be
closely related to that of its cubic parent compound NdIn3 below 4.6K. The
enhanced T_N and the absence of additional transitions below T_N for NdRhIn5
are interpreted in terms of an improved matching of the
crystalline-electric-field (CEF), magnetocrystalline, and exchange interaction
anisotropies. In comparison, the role of these competing anisotropies on the
magnetic properties of the structurally related compound CeRhIn5 is discussed.Comment: 4 pages, 4 figure
- …