15 research outputs found

    SINE indel polymorphism of AGL gene and association with growth and carcass traits in Landrace × Jeju black pig F2 population

    Get PDF
    Genetic polymorphisms in the glycogen debrancher enzyme (AGL) gene were assessed with regard to their association with growth and carcass traits in the F2 population crossbred Landrace and Jeju (Korea) Black pig. Three genotypes representing the insertion and/or deletion (indel) polymorphisms of short interspersed nuclear element were detected at frequencies of 0.278 (L/L), 0.479 (L/S), and 0.243 (S/S), respectively. The AGL S allele-containing pigs evidenced significantly heavier body weights at birth, the 3rd week, 10th week, and 20th week during developmental stages and higher average daily gains during the late period than were noted in the L/L homozygous pigs (P < 0.05), respectively. However, average daily gains during the early period were not significantly associated with genotype distribution (P > 0.05). With regard to the carcass traits, the S allele pigs (S/-) evidenced significantly heavier carcass weights and thicker backfat than was measured in L/L homozygous pigs (P < 0.05). However, body lengths, meat color, and marbling scores were all found not to be statistically significant (P > 0.05). Consequently, the faster growth rate during the late period and backfat deposition rather than intramuscular fat deposition cause differences in pig productivity according to genotypes of the AGL gene. These findings indicate that the AGL genotypes may prove to be useful genetic markers for the improvement of Jeju Black pig-related crossbreeding systems

    The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown

    Get PDF
    DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression

    Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA.

    No full text
    We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found

    Atomic force microscopy of oriented linear DNA molecules labeled with 5nm gold spheres.

    Get PDF
    The atomic force microscope (AFM;1) can image DNA and RNA in air and under solutions at resolution comparable to that obtained by electron microscopy (EM) (2-7). We have developed a method for depositing and imaging linear DNA molecules to which 5nm gold spheres have been attached. The gold spheres facilitate orientation of the DNA molecules on the mica surface to which they are absorbed and are potentially useful as internal height standards and as high resolution gene or sequence specific tags. We show that by modulating their adhesion to the mica surface, the gold spheres can be moved with some degree of control with the scanning tip
    corecore