26,212 research outputs found

    Determination of the Sign of g factors for Conduction Electrons Using Time-resolved Kerr Rotation

    Get PDF
    The knowledge of electron g factor is essential for spin manipulation in the field of spintronics and quantum computing. While there exist technical difficulties in determining the sign of g factor in semiconductors by the established magneto-optical spectroscopic methods. We develop a time resolved Kerr rotation technique to precisely measure the sign and the amplitude of electron g factor in semiconductors

    Deep Neural Networks - A Brief History

    Full text link
    Introduction to deep neural networks and their history.Comment: 14 pages, 14 figure

    Elastic effects on relaxation volume tensor calculations

    Full text link
    Relaxation volume tensors quantify the effect of stress on diffusion of crystal defects. Continuum linear elasticity predicts that calculations of these parameters using periodic boundary conditions do not suffer from systematic deviations due to elastic image effects and should be independent of supercell size or symmetry. In practice, however, calculations of formation volume tensors of the interstitial in Stillinger-Weber silicon demonstrate that changes in bonding at the defect affect the elastic moduli and result in system-size dependent relaxation volumes. These vary with the inverse of the system size. Knowing the rate of convergence permits accurate estimates of these quantities from modestly sized calculations. Furthermore, within the continuum linear elasticity assumptions the average stress can be used to estimate the relaxation volume tensor from constant volume calculations.Comment: 31 pages, 6 figures, submitted to Phys. Rev.

    Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas

    Full text link
    Converse effect of spin photocurrent and current induced spin polarization are experimentally demonstrated in the same two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin polarization and spin orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates the system with dominating structure inversion asymmetry.Comment: 13 pages, 4 figure

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Predicting leptonic CP violation in the light of Daya Bay result

    Full text link
    In the light of the recent Daya Bay result the reactor angle is about 9 degrees, we reconsider the model presented in arXiv:1005.3482 showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et al and the reactor angle to be the central value of Daya Bay, the predicted value of the CP phase is approximately 45 degrees.Comment: 4 pages, 2 figures, update of arXiv:1005.348
    corecore