26,212 research outputs found
Determination of the Sign of g factors for Conduction Electrons Using Time-resolved Kerr Rotation
The knowledge of electron g factor is essential for spin manipulation in the
field of spintronics and quantum computing. While there exist technical
difficulties in determining the sign of g factor in semiconductors by the
established magneto-optical spectroscopic methods. We develop a time resolved
Kerr rotation technique to precisely measure the sign and the amplitude of
electron g factor in semiconductors
Deep Neural Networks - A Brief History
Introduction to deep neural networks and their history.Comment: 14 pages, 14 figure
Elastic effects on relaxation volume tensor calculations
Relaxation volume tensors quantify the effect of stress on diffusion of
crystal defects. Continuum linear elasticity predicts that calculations of
these parameters using periodic boundary conditions do not suffer from
systematic deviations due to elastic image effects and should be independent of
supercell size or symmetry. In practice, however, calculations of formation
volume tensors of the interstitial in Stillinger-Weber silicon
demonstrate that changes in bonding at the defect affect the elastic moduli and
result in system-size dependent relaxation volumes. These vary with the inverse
of the system size. Knowing the rate of convergence permits accurate estimates
of these quantities from modestly sized calculations. Furthermore, within the
continuum linear elasticity assumptions the average stress can be used to
estimate the relaxation volume tensor from constant volume calculations.Comment: 31 pages, 6 figures, submitted to Phys. Rev.
Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas
Converse effect of spin photocurrent and current induced spin polarization
are experimentally demonstrated in the same two-dimensional electron gas system
with Rashba spin splitting. Their consistency with the strength of the Rashba
coupling as measured from beating of the Shubnikov-de Haas oscillations reveals
a unified picture for the spin photocurrent, current-induced spin polarization
and spin orbit coupling. In addition, the observed spectral inversion of the
spin photocurrent indicates the system with dominating structure inversion
asymmetry.Comment: 13 pages, 4 figure
Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant
We compute the dimensionality dependence of for charged black branes
with Gauss-Bonnet correction. We find that both causality and stability
constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in
the infinite dimensionality limit. We further show that higher dimensionality
stabilize the gravitational perturbation. The stabilization of the perturbation
in higher dimensional space-time is a straightforward consequence of the
Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio
Predicting leptonic CP violation in the light of Daya Bay result
In the light of the recent Daya Bay result the reactor angle is about 9
degrees, we reconsider the model presented in arXiv:1005.3482 showing that,
when all neutrino oscillation parameters are taken at their best fit values of
Schwetz et al and the reactor angle to be the central value of Daya Bay, the
predicted value of the CP phase is approximately 45 degrees.Comment: 4 pages, 2 figures, update of arXiv:1005.348
- …